Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flower-like Magnetic Nanoparticles Target Difficult Tumors

04.03.2015

Dartmouth College researchers aim to treat deep-seated tumors, such as those found in pancreatic cancer, by using a flower-shaped magnetic nanoparticle capable of reaching deeper within the human body than currently available methods

Thanks to the work of an interdisciplinary team of researchers at the Dartmouth Center of Nanotechnology Excellence, funded by the National Institutes of Health, the next-generation magnetic nanoparticles (MNPs) may soon be treating deep-seated and difficult-to-reach tumors within the human body.


Shubitidze

Transmission electron microscopy images of Dartmouth’s flower-like magnetic nanoparticles.

Though the researchers caution that any new therapies based on their discoveries will have to prove safe and effective in clinical trials before becoming routinely available for people with cancer, they point to the work they published this week in the Journal of Applied Physics, from AIP Publishing, as significant progress.

They created a new class of flower-shaped magnetic nanoparticles with superior performance in low-level magnetic fields and worked out their heating mechanism. The work provides future suggestions for developing a new generation of irregularly shaped magnetic nanoparticles for hyperthermia cancer therapy.

What is clinical hyperthermia? It’s a technique in which the temperature of a part or the whole of the body is raised above normal. Heat is known to damage or destroy cancerous cells, but to harness it safely and effectively, heating must be applied very specifically and the tumor must be kept within an exacting temperature range for a precise period of time.

One way to achieve this is to administer nanoparticles and then heat them with energy from light, sound or alternating magnetic waves. This is no easy task because the applied alternating radio-frequency waves also generate unnecessary heating in normal tissues. “To date, most commercially available particles designed for the application of hyperthermia heat very well in a relatively high frequency, strong magnetic field,” said Fridon Shubitidze, associate professor of engineering at Dartmouth College’s Thayer School of Engineering. “However, there is a limit to the frequency and strength that can be applied.”

When the human body is placed in a high frequency and strong alternating field, it begins to warm up and, if left unchecked, this could damage normal cells. “One way to avoid damaging normal tissue is by gaining a deeper understanding of the magnetic nanoparticles’ heating mechanisms and using this knowledge to create magnetic nanoparticles that heat at low field strengths,” Shubitidze pointed out.

In general, bulk magnetic materials heat when they experience a changing magnetic field. “When shrunken down to nano size, these materials can heat in a few different ways that don’t occur on a larger scale,” explained Shubitidze. “Some involve motion, with the particles physically rotating and/or moving under the influence of the field, while others are entirely non-mechanical and only involve changes in the direction in which the particles are magnetized.”

Overall, magnetic nanoparticle hyperthermia consists of two main steps: delivery and then activation of nanoparticles inside tumor cells. Once the magnetic nanoparticles are delivered inside tumor cells, the system activates an electromagnetic field that transfers energy to them, creating localized heating to destroy the tumor cells.

“The local temperature is directly related to the magnitude of the alternating magnetic field at the tumor,” Shubitidze elaborated. “The alternating magnetic field from a coil decays rapidly, so to apply this technology in cases involving tumors deep within the body—such as pancreatic cancers—achieving a high-amplitude alternating magnetic field in the tumor necessitates an even higher amplitude alternating magnetic field at the surface. This high magnitude field can also elevate the temperature in normal tissues and limits applicability of magnetic nanoparticle hyperthermia therapy by not getting enough heat out of the particles, which are in a tumor deep within the body.”

The particles designed, synthesized and tested by the team show improved performance at low field levels compared to their commercially available counterparts.

This marks a significant step toward “enabling treatment of tumors that are deep within the body,” said Shubitidze. “The mechanism of the heating is dictated by various factors such as nanoparticle shape, size, material type and influence of the surrounding environment. Analyses showed that in addition to possible hysteresis heating, the power loss mechanism for our magnetic nanoparticles is magnetic-field-driven viscous frictional loss, which was not previously considered within the magnetic nanoparticle hyperthermia research community.”

In terms of applications, magnetic nanoparticle hyperthermia proves effective when there are enough particles in the tumor, when the particles have favorable heating properties, and when a sufficiently strong magnetic field is delivered. The technology can be used as a standalone therapy or as an adjuvant therapy along with chemo and radiation therapies for cancer treatment.

The development of magnetic nanoparticles that heat at lower field levels is an “important step toward making magnetic nanoparticle hyperthermia a clinically viable treatment for deep-seated cancers,” Shubitidze noted.

What’s next for the team? “We’re currently working to combine our magnetic nanoparticles and a new device to deliver a higher field strength to the tumor in the case of pancreatic cancer, which is a particularly difficult target for conventional field generating devices,” said Shubitidze.

This work was funded by the National Cancer Institute, one of the National Institutes of Health.

The article, "Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy," is authored by Fridon Shubitidze, Katsiaryna Kekalo, Robert Stigliano and Ian Baker. It appears in the Journal of Applied Physics on March 3, 2015 (DOI: 10.1063/1.4907915). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jap/117/9/10.1063/1.4907915

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi, AIP | newswise

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>