Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Float Like a Mosquito, Sting Like a…Mosquito


Researchers evaluate mosquitoes' ability to float on water in order to potentially design aquatic robots

Small semi-aqueous arthropods, such as mosquitoes and water striders, are free to go about their waterborne business thanks to their unique leg-based adaptations, which repel water and allow them to float freely on the surface.

Jianlin Liu/China University of Petroleum

(a–c) Sequence of the terminal half of a tarsus progressively depressing the water surface. (d–f) Sequence of the whole hind leg progressively depressing the water surface.

By examining the forces that the segments of mosquito legs generate against a water surface, researchers at the China University of Petroleum (Huadong) and Liaoning University of Technology have unraveled the mechanical logic that allows the mosquitoes to walk on water, which may help in the design of biomimetic structures, such as aquatic robots and small boats.

"The current analyses deepen our understanding of the mechanisms of water-walking of these aquatic insects," said Jianlin Liu, a professor in the Department of Engineering Mechanics at the China University of Petroleum. They describe their current research in the journal AIP Advances, from AIP Publishing.

Mosquitoes land on still bodies of water to lay their eggs just under the surface, where the embryos will hatch and develop into a pupa, eventually emerging from the water as a mature adult to continue the cycle.

A mosquito leg consists of three segments coated in grid-like, microscopic hydrophobic scales: a stiff femur juts out from the insect's abdomen and connects at a joint to an equally stiff tibia, which branches into a long, flexible tarsus. Previous measurements of the ability of water surfaces to support insects had largely ignored the tarsus, however, focusing instead on whole legs.

The researchers measured the buoyant force produced by the tarsus by adhering a mosquito leg to a steel needle, which was attached to an indenter column and microsensor. This in-situ setup allowed them to adjust the angle and force between the leg and the water's surface, while taking readings with an optical microscope and digital camera.

Liu and his colleagues found that the insect's ability to float on water - generating an upward force of twenty times its own body weight with its six legs - is owed entirely to the tarsus's buoyant horizontal contact with the surface.

"This finding overthrows the classical viewpoint that the longer the mosquito leg, the more efficiently it produces buoyant force," Liu said.

By reducing the total surface area of the leg in contact with water, the adhesive force of the water on the insect is greatly reduced, which assists in takeoff.

The structural ability of the tarsus to achieve such a large supporting force per unit length, however, remains an ongoing research endeavor for the team. Future work for Liu and his colleagues involves studying the microstructures, wet adhesive forces and dynamic behavior of mosquito legs.

The article, "Load-bearing ability of the mosquito tarsus on water surfaces arising from its flexibility,” is authored by Xiang-qing Kong, Jianlin Liu, Wen-jiao Zhang and Qu Yandong. It will appear in the journal AIP Advances on March 3, 2015 (DOI: 10.1063/1.4908027). After that date, it can be accessed at:


AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See

Contact Information
Jason Socrates Bardi
+1 240-535-4954

Jason Socrates Bardi | newswise

Further reports about: AIP Petroleum adhesive aquatic float insects mosquito mosquitoes ongoing research surfaces water surfaces

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>