Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Float Like a Mosquito, Sting Like a…Mosquito

04.03.2015

Researchers evaluate mosquitoes' ability to float on water in order to potentially design aquatic robots

Small semi-aqueous arthropods, such as mosquitoes and water striders, are free to go about their waterborne business thanks to their unique leg-based adaptations, which repel water and allow them to float freely on the surface.


Jianlin Liu/China University of Petroleum

(a–c) Sequence of the terminal half of a tarsus progressively depressing the water surface. (d–f) Sequence of the whole hind leg progressively depressing the water surface.

By examining the forces that the segments of mosquito legs generate against a water surface, researchers at the China University of Petroleum (Huadong) and Liaoning University of Technology have unraveled the mechanical logic that allows the mosquitoes to walk on water, which may help in the design of biomimetic structures, such as aquatic robots and small boats.

"The current analyses deepen our understanding of the mechanisms of water-walking of these aquatic insects," said Jianlin Liu, a professor in the Department of Engineering Mechanics at the China University of Petroleum. They describe their current research in the journal AIP Advances, from AIP Publishing.

Mosquitoes land on still bodies of water to lay their eggs just under the surface, where the embryos will hatch and develop into a pupa, eventually emerging from the water as a mature adult to continue the cycle.

A mosquito leg consists of three segments coated in grid-like, microscopic hydrophobic scales: a stiff femur juts out from the insect's abdomen and connects at a joint to an equally stiff tibia, which branches into a long, flexible tarsus. Previous measurements of the ability of water surfaces to support insects had largely ignored the tarsus, however, focusing instead on whole legs.

The researchers measured the buoyant force produced by the tarsus by adhering a mosquito leg to a steel needle, which was attached to an indenter column and microsensor. This in-situ setup allowed them to adjust the angle and force between the leg and the water's surface, while taking readings with an optical microscope and digital camera.

Liu and his colleagues found that the insect's ability to float on water - generating an upward force of twenty times its own body weight with its six legs - is owed entirely to the tarsus's buoyant horizontal contact with the surface.

"This finding overthrows the classical viewpoint that the longer the mosquito leg, the more efficiently it produces buoyant force," Liu said.

By reducing the total surface area of the leg in contact with water, the adhesive force of the water on the insect is greatly reduced, which assists in takeoff.

The structural ability of the tarsus to achieve such a large supporting force per unit length, however, remains an ongoing research endeavor for the team. Future work for Liu and his colleagues involves studying the microstructures, wet adhesive forces and dynamic behavior of mosquito legs.

The article, "Load-bearing ability of the mosquito tarsus on water surfaces arising from its flexibility,” is authored by Xiang-qing Kong, Jianlin Liu, Wen-jiao Zhang and Qu Yandong. It will appear in the journal AIP Advances on March 3, 2015 (DOI: 10.1063/1.4908027). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4908027

ABOUT THE JOURNAL

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See http://aipadvances.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Petroleum adhesive aquatic float insects mosquito mosquitoes ongoing research surfaces water surfaces

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>