Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Float Like a Mosquito, Sting Like a…Mosquito

04.03.2015

Researchers evaluate mosquitoes' ability to float on water in order to potentially design aquatic robots

Small semi-aqueous arthropods, such as mosquitoes and water striders, are free to go about their waterborne business thanks to their unique leg-based adaptations, which repel water and allow them to float freely on the surface.


Jianlin Liu/China University of Petroleum

(a–c) Sequence of the terminal half of a tarsus progressively depressing the water surface. (d–f) Sequence of the whole hind leg progressively depressing the water surface.

By examining the forces that the segments of mosquito legs generate against a water surface, researchers at the China University of Petroleum (Huadong) and Liaoning University of Technology have unraveled the mechanical logic that allows the mosquitoes to walk on water, which may help in the design of biomimetic structures, such as aquatic robots and small boats.

"The current analyses deepen our understanding of the mechanisms of water-walking of these aquatic insects," said Jianlin Liu, a professor in the Department of Engineering Mechanics at the China University of Petroleum. They describe their current research in the journal AIP Advances, from AIP Publishing.

Mosquitoes land on still bodies of water to lay their eggs just under the surface, where the embryos will hatch and develop into a pupa, eventually emerging from the water as a mature adult to continue the cycle.

A mosquito leg consists of three segments coated in grid-like, microscopic hydrophobic scales: a stiff femur juts out from the insect's abdomen and connects at a joint to an equally stiff tibia, which branches into a long, flexible tarsus. Previous measurements of the ability of water surfaces to support insects had largely ignored the tarsus, however, focusing instead on whole legs.

The researchers measured the buoyant force produced by the tarsus by adhering a mosquito leg to a steel needle, which was attached to an indenter column and microsensor. This in-situ setup allowed them to adjust the angle and force between the leg and the water's surface, while taking readings with an optical microscope and digital camera.

Liu and his colleagues found that the insect's ability to float on water - generating an upward force of twenty times its own body weight with its six legs - is owed entirely to the tarsus's buoyant horizontal contact with the surface.

"This finding overthrows the classical viewpoint that the longer the mosquito leg, the more efficiently it produces buoyant force," Liu said.

By reducing the total surface area of the leg in contact with water, the adhesive force of the water on the insect is greatly reduced, which assists in takeoff.

The structural ability of the tarsus to achieve such a large supporting force per unit length, however, remains an ongoing research endeavor for the team. Future work for Liu and his colleagues involves studying the microstructures, wet adhesive forces and dynamic behavior of mosquito legs.

The article, "Load-bearing ability of the mosquito tarsus on water surfaces arising from its flexibility,” is authored by Xiang-qing Kong, Jianlin Liu, Wen-jiao Zhang and Qu Yandong. It will appear in the journal AIP Advances on March 3, 2015 (DOI: 10.1063/1.4908027). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4908027

ABOUT THE JOURNAL

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See http://aipadvances.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Petroleum adhesive aquatic float insects mosquito mosquitoes ongoing research surfaces water surfaces

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>