Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First look at Jupiter's poles show strange geometric arrays of storms

08.03.2018

Jupiter's got no sway. The biggest planet in the solar system has no tilt as it moves, so its poles have never been visible from Earth.

But in the past two years, with NASA's Juno spacecraft, scientists have gotten a good look at the top and bottom of the planet for the first time. What they found astounded them: bizarre geometric arrangements of storms, each arrayed around one cyclone over the north and south poles--unlike any storm formation seen in the universe.


Five massive storms form a pentagon around a storm at the center of Jupiter's south pole-the first look we've ever gotten at the gas giant's poles, and a scientific mystery.

Credit: NASA/SWRI/JPL/ASI/INAF/IAPS

The study, authored by scientists from an international group of institutions including the University of Chicago, is published in March 8's Nature as part of a set of four papers dedicated to new observations from the Juno spacecraft.

Juno launched in 2011 with the ambitious mission of finally seeing beneath the dense clouds covering Jupiter. On July 4, 2016, it finally reached the planet's orbit. Since then it's been orbiting the planet, taking pictures and measuring the planet's profile in infrared, microwave, ultraviolet, gravity and magnetism--and answering questions scientists have had about Jupiter for decades.

One of these was the question of what lay at its elusive poles. When scientists got the first images, they were stunned. At the north pole, eight storms surrounded one storm at the center. At the south pole, it was the same arrangement, only with five storms. But the numbers stayed oddly constant; the storms weren't drifting and merging, as our current understanding of the science suggested they should.

"They are extraordinarily stable arrangements of such chaotic elements," said Morgan O'Neill, a University of Chicago postdoctoral scholar and a co-author on the paper. "We'd never seen anything like it."

The geometry rang a faint bell in O'Neill's mind, though. She found it in the library of strange physical phenomena only observed under special conditions in the laboratory. In the 1990s, scientists observed a similar behavior as they used electrons to simulate a frictionless, turbulent 2-D fluid as it cools. Instead of merging, which tends to happen in such 2-D flows, small vortices would clump together and form equally spaced arrays, or "vortex crystals," around a center.

It's not yet clear whether the same physics underlies both these behaviors, O'Neill said, but it is tantalizing. "The next step is: Can you create a model that builds a virtual planet and predicts these flows?" she said. With further studies, they can understand the forces at play in the swirling storms.

A greater understanding of the physics behind the flows and dynamics of storms is helpful on every planet; though O'Neill did her PhD on the dynamics of cyclones on gas giants (including a prediction that Jupiter's poles would not look like Saturn's: "I got it...partially right," she said), she now uses similar storm modeling to study hurricanes on Earth.

###

The study was led by Alberto Adriani with Rome's Institute for Space Astrophysics and Planetology. Other authors on the study were from the Jet Propulsion Laboratory, Caltech, the British Astronomical Association, the Southwest Research Institute, NASA Goddard Space Flight Center, the University of Michigan, Cornell University, the University of Atacama in Chile and the Planetary Science Institute, as well as the Institute for Space Astrophysics and Planetology, the University of Bologna, the Italian Space Agency and the Institute of Atmospheric Sciences and Climate, all in Italy.

Media Contact

Louise Lerner
louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu

Louise Lerner | EurekAlert!

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>