Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Detection of Super-Earth Atmosphere

17.02.2016

For the first time astronomers were able to analyse the atmosphere of an exoplanet in the class known as super-Earths. Using data gathered with the NASA/ESA Hubble Space Telescope and new analysis techniques, the exoplanet 55 Cancri e is revealed to have a dry atmosphere without any indications of water vapour. The results, to be published in the Astrophysical Journal, indicate that the atmosphere consists mainly of hydrogen and helium.

The international team, led by scientists from University College London (UCL) in the UK, took observations of the nearby exoplanet 55 Cancri e, a super-Earth with a mass of eight Earth-masses [1]. It is located in the planetary system of 55 Cancri, a star about 40 light-years from Earth.


Transit of 55 Cancri e

Using observations made with the Wide Field Camera 3 (WFC3) on board the NASA/ESA Hubble Space Telescope, the scientists were able to analyse the atmosphere of this exoplanet. This makes it the first detection of gases in the atmosphere of a super-Earth.

The results allowed the team to examine the atmosphere of 55 Cancri e in detail and revealed the presence of hydrogen and helium, but no water vapour. These results were only made possible by exploiting a newly-developed processing technique.

“This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth,” explains Angelos Tsiaras, a PhD student at UCL, who developed the analysis technique along with his colleagues Ingo Waldmann and Marco Rocchetto. “The observations of 55 Cancri e’s atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it originally formed.”

Super-Earths like 55 Cancri e are thought to be the most common type of planet in our galaxy. They acquired the name ‘super-Earth’ because they have a mass larger than that of the Earth but are still much smaller than the gas giants in the Solar System. The WFC3 instrument on Hubble has already been used to probe the atmospheres of two other super-Earths, but no spectral features were found in those previous studies [2].

55 Cancri e, however, is an unusual super-Earth as it orbits very close to its parent star. A year on the exoplanet lasts for only 18 hours and temperatures on the surface are thought to reach around 2000 degrees Celsius. Because the exoplanet is orbiting its bright parent star at such a small distance, the team was able to use new analysis techniques to extract information about the planet, during its transits in front of the host star.

Observations were made by scanning the WFC3 very quickly across the star to create a number of spectra. By combining these observations and processing them through analytic software, the researchers were able to retrieve the spectrum of 55 Cancri e embedded in the light of its parent star.

“This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like and how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths,” said Giovanna Tinetti, also from UCL, UK.

Intriguingly, the data also contain hints of the presence of hydrogen cyanide, a marker for carbon-rich atmospheres.

“Such an amount of hydrogen cyanide would indicate an atmosphere with a very high ratio of carbon to oxygen,” said Olivia Venot, KU Leuven, who developed an atmospheric chemical model of 55 Cancri e that supported the analysis of the observations.

“If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place,” concludes Jonathan Tennyson, UCL. “Although hydrogen cyanide, or prussic acid, is highly poisonous, so it is perhaps not a planet I would like to live on!”

Notes


[1] 55 Cancri e has previously been dubbed the “diamond planet” because models based on its mass and radius have led to the idea that its interior is carbon-rich.


[2] Hubble observed the super-Earths GJ1214b and HD97658b in 2014, using the transit method. The observations did not show any spectral features, indicating an atmosphere covered by thick clouds made of molecular species much heavier than hydrogen.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The results were summarized by Tsiaras et al. in the paper “Detection of an atmosphere around the super-Earth 55 Cancri e” which is going to be published in the Astrophysical Journal.

The team of astronomers in this study consists of A. Tsiaras (UCL, UK), M. Rocchetto (UCL, UK), I. P. Waldmann (UCL, UK), O. Venot (Katholieke Universiteit Leuven, Belgium), R. Varley (UCL, UK), G. Morello (UCL, UK), G. Tinetti (UCL, UK), E. J. Barton (UCL, UK), S. N. Yurchenko (UCL, UK), J. Tennyson (UCL, UK).

University College London was founded in 1826. It was the first English university established after Oxford and Cambridge, the first to open up university education to those previously excluded from it, and the first to provide systematic teaching of law, architecture and medicine. UCL is among the world’s top universities, as reflected by performance in a range of international rankings and tables. UCL currently has over 35 000 students from 150 countries and over 11 000 staff.

Links
Images of Hubble
Link to science paper
Release on the Europlanet Media Centre website

Contacts

Angelos Tsiaras
UCL
United Kingdom
Tel: +44 (0)20 3549 5844
Email: atsiaras@star.ucl.ac.uk

Giovanna Tinetti
UCL
United Kingdom
Tel: +44 (0) 7912509617
Email: g.tinetti@ucl.ac.uk

Olivia Venot
KU Leuven
Belgium
Email: olivia.venot@ster.kuleuven.be

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

Anita Heward
Europlanet Media Centre
Tel: +44 (0) 7756 034243
Email: anita.heward@europlanet-eu.org

Rebecca Caygill
Media Relations Manager
UCL Communications & Marketing, United Kingdom
Tel: +44 (0)20 3108 3846
Email: r.caygill@ucl.ac.uk

Mathias Jäger | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1603/?lang

Further reports about: Atmosphere ESA Europlanet Hubble Hubble Space Telescope NASA hydrogen cyanide

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>