Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Fire-streaks' are created in collisions of atomic nuclei


At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. At the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, Poland it has been shown that the course of this complex process can be represented by a surprisingly simple model: extremely hot matter moves away from the impact point, stretching along the original flight path in streaks, and the further the streak is from the plane of the collision, the greater its velocity.

When two massive atomic nuclei collide at high energies, the most exotic form of matter is formed: the quark-gluon plasma behaving like a perfect fluid. The theoretical considerations of physicists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow, Poland show that after impact the plasma forms into streaks along the direction of impact, moving faster the further away it moves from the collision axis. The model, its predictions and the effects of their confrontation with hitherto experimental data are presented in the journal Physical Review C.

Fragments of extremely hot matter, produced in the collision of heavy atomic nuclei at the SPS accelerator at the European CERN centre, move away from each other at high velocities, forming streaks along the direction of the collision.

Source: IFJ PAN, Iwona Sputowska

Collisions of atomic nuclei occur extremely rapidly and at distances of merely hundreds of femtometres (i.e. hundreds of millionths of one billionth of a metre). The physical conditions are exceptionally sophisticated and direct observation of the phenomenon is not currently possible.

In such situations, science copes by constructing theoretical models and confronting their predictions with the data collected in experiments. In the case of these collisions, however, a huge disadvantage is that the resulting conglomerate of particles is the quark-gluon plasma. Interactions between quarks and gluons are dominated by forces that are so strong and complex that modern physics is not capable of describing them precisely.

"Our group decided to focus on the electromagnetic phenomena occurring during the collision because they are much easier to express in the language of mathematics. As a result, our model proved to be simple enough for us to employ the principles of energy and momentum conservation without too much trouble. Later on, we found that despite the adopted simplifications the model predictions remain at least 90% consistent with experimental data", says Dr. Andrzej Rybicki (IFJ PAN).

Massive atomic nuclei accelerated to high velocities, observed in the laboratory, are flattened in the direction of motion as a result of the effects of the theory of relativity. When two such proton-neutron 'pancakes' fly towards each other, the collision is generally not central: only some of the protons and neutrons of one nucleus reach the other, entering into violent interactions and forming the quark-gluon plasma. At the same time, some of the external fragments of the nuclear pancakes do not encounter any obstacles on their way and continue their uninterrupted flight; in the jargon of physicists they are called spectators.

"Our work was inspired by data collected in earlier experiments with nuclear collisions, including these made at the SPS accelerator. The electromagnetic effects occurring in these collisions that we examined showed that the quark-gluon plasma moves at a higher velocity the closer it is to the spectators", says Dr. Rybicki.

In order to reproduce this course of the phenomenon, the physicists from IFJ PAN decided to divide the nuclei along the direction of movement into a series of strips - 'bricks'. Each nucleus in cross section thus looked like a pile of stacked bricks (in the model their height was one femtometre). Instead of considering the complex strong interactions and flows of momentum and energy between hundreds and thousands of particles, the model reduced the problem to several dozen parallel collisions, each occurring between two proton-neutron bricks.

The IFJ PAN scientists confronted the predictions of the model with data collected from collisions of massive nuclei measured by the NA49 experiment at the Super Proton Synchrotron (SPS). This accelerator is located at the CERN European Nuclear Research Organization near Geneva, where one of its most important tasks now is to accelerate particles shot into the LHC accelerator.

"Due to the scale of technical difficulties, the NA49 experiment's results are subject to specific measurement uncertainties that are difficult to completely reduce or eliminate. In reality, the accuracy of our model can even be greater than the already mentioned 90%. This entitles us to say that even if there were any additional, still not included, physical mechanisms in the collisions they should no longer significantly affect the theoretical framework of the model", comments doctoral student Miroslaw Kielbowicz (IFJ PAN).

After developing the model of collisions of 'brick stacks', the IFJ PAN researchers discovered that a very similar theoretical structure, called the fire streak model, had been proposed by a group of physicists from the Lawrence Berkeley Laboratory (USA) and the Saclay Nuclear Research Centre in France - already in 1978.

"The previous model of fire streaks which, in fact, we mention in our publication, was built to describe other collisions occurring at lower energies. We have created our structure independently and for a different energy range", says Prof. Antoni Szczurek (IFJ PAN, University of Rzeszow) and emphasizes: "The existence of two independent models based on a similar physical idea and corresponding to measurements in different energy ranges of collisions increases the probability that the physical basis on which these models are built is correct".

The Cracow fire streak model provides new information on the expansion of quark-gluon plasma in high energy collisions of massive atomic nuclei. The study of these phenomena is being further extended in the framework of another international experiment, NA61/SHINE at the SPS accelerator.


The research of the IFJ PAN group is being financed by the SONATA BIS grant from the National Science Centre.

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 500 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Krakow Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.


Dr. Andrzej Rybicki
The Institute of Nuclear Physics of the Polish Academy of Sciences
tel.: +48 12 6628447

Prof. Antoni Szczurek
The Institute of Nuclear Physics of the Polish Academy of Sciences
tel. +48 12 6628212


"Implications of energy and momentum conservation for particle emission in A+A collisions at energies available at the CERN Super Proton Synchrotron"

A. Szczurek, M. Kielbowicz, A. Rybicki

Physical Review C 95, 024908


LINKS: The website of the SHINE experiment. The website of the European Organization for Nuclear Research (CERN). The website of the Institute of Nuclear Physics of the Polish Academy of Sciences. Press releases of the Institute of Nuclear Physics of the Polish Academy of Sciences.




Fragments of extremely hot matter, produced in the collision of heavy atomic nuclei at the SPS accelerator at the European CERN centre, move away from each other at high velocities, forming streaks along the direction of the collision. (Source: IFJ PAN, Iwona Sputowska)

Media Contact

Andrzej Rybicki

Andrzej Rybicki | EurekAlert!

Further reports about: CERN Nuclear Physics SPS atomic nuclei quark-gluon plasma

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>