Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Final proof for optimal encoding strategies in optical communication

24.09.2014

MPQ theorist proves that Gaussian encoding guarantees minimum output entropy and hence ultimate capacity of optical communication channels.

The massive transfer of data over the Internet that is vital to today’s economy in our information society would not be possible without the crucial role played by fibre optics communication. Every time a node of the Internet sends information, it encodes a sequence of digital bits composing the message into light pulses.

These light pulses are later sent through an optical fibre to a receiving node that converts the light signal back to the original sequence of bits. The increase demand for higher data transfer raises the natural question on what are the fundamental physical limits to the information transmission rate over optical links.

Raul García-Patrón, former member of the Theory Division of Professor Ignacio Cirac at the Max Planck Institute of Quantum Optics, with collaborators from Pisa, Brussels and Moscow, has recently answered this question (Nature Photonics, 21 September 2014), concluding a research program that started during his Humboldt postdoctoral fellowship at the MPQ between the years 2011 and 2013.

It has been known since the pioneering work of Albert Einstein that light is composed at its smallest scale by quantum particles called photons. Therefore, a definitive answer to the question on the ultimate limits to optical communication needs to consider the quantum nature of light.

It was already at the beginning of the 1960s, after the development of the laser together with the development of the modern quantum theory of light, when the question on the fundamental physical limits to the information transmission rate over optical links was raised. But it was only a few decades later, at the birth of quantum communication theory at the end of the 1990s, that the right tools necessary to answer this question were developed by the pioneering work of Professor Alexander Holevo (co-author of this manuscript).

Subsequent work conjectured that the optimal strategy to send information over optical communication lines does not need the generation of highly complex quantum states, but simple light pulses generated by currently existing lasers are sufficient to reach the optimal communication rates. But no definitive answer had been given since then.

In a previous work in 2012 (Phys. Rev. Lett. 108, 110505, 2012), Raul García-Patrón (working then at the Theory Division at MPQ), in collaboration with Carlos Navarrete-Benlloch (current member of the Theory Division) and other scientists from the Universite Libre de Bruxelles and Massachusetts Institute of Technology, showed that any realistic optical communication channel can be modelled by a concatenation of an ideal attenuation channel followed by an ideal process of amplification.

Therefore, the former conjecture on the optimal strategy to encode information could be reduced to a basic question: what is the minimum disorder, or entropy, that is added to the input signal by one of the most studied quantum optical processes, namely optical parametric amplification? “Entropy is a measure of disorder. Minimum output entropy of the channel measures how much the channel distorts the input state that you initially sent through the line”, Dr García-Patrón explains.

“The highest achievable bit rate is given by a function that is optimized by minimizing the output entropy of the channel. Intuitively it means you want to minimize the distortion the channel produces to your input signal.” Now the team of scientists were able to prove that a Gaussian encoding achieves minimum out-put entropy and hence provides the ultimate capacity of an optical communication channel.

Gaussian states are the most natural states of light. Gaussian channels that preserve the “Gaussianity” of the state are the most natural models of optical communication links, for example fibres or amplifiers. Following the roadmap that was suggested in its previous work (the Physical Review Letters mentioned above) Dr. Garcia-Patron and collaborators successfully solved this longstanding open problem exploiting some known properties of the amplifier channels in a novel way.

The solution may have implications in other fields of physics, as many physical systems are mathematically modelled by bosonic Gaussian states and channels, for example, thermodynamical processes of bosonic systems, the theory of entanglement in Hawking radiation in black-holes, or superconducting systems. However, a few questions remain that wait to be answered.

“We know that very simple states achieve an optimal encoding. But we do not know if the same holds for the decoding of the information”, says García-Patrón. “Our result just gives a proof of existence: we know there is a detector achieving our rate, but further research is needed to find a realistic optimal decoding that could be implemented. As far as future applications are concerned, a simple efficient decoding could be useful e.g. in regimes where the signals are extremely weak at the reception, as in earth to deep-space communication.” R. García-Patrón/O. Meyer-Streng

Original publication:

V. Giovannetti, R. García-Patrón, N. J. Cerf and A. S. Holevo
Ultimate classical communication rates of quantum optical channels by solving the Gaussian minimum-entropy conjecture
Nature Photonics, Advance Online Publication, 21 September 2014

Contact:

Dr. Raul Garcia-Patrón
BELSPO postdoctoral fellow
QuIC - Ecole Polytechnique de Bruxelles
Université Libre de Bruxelles
50 av. F. D. Roosevelt - CP 165/59
B-1050 Bruxelles, Belgium
Phone: +32 2 650 -2820 / Fax: -2941
E-mail: rgarciap@ulb.ac.be
http://quic.ulb.ac.be/members/rgarciap

Prof. Dr. Ignacio Cirac
Honorary Professor TU München
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Phone: +49 (0)89 32 905 -705/-736 / Fax: -336
E-mail: ignacio.cirac@mpq.mpg.de
www.mpq.mpg.de/cirac

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics,
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>