Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Film production in 4D with ultrashort electron pulses

27.10.2015

Physicists of the Ludwig-Maximilians-Universität Munich and the Max Planck Institute of Quantum Optics shorten electron pulses down to 30 femtoseconds duration. This enables them to gain detailed insight into atomic motions in molecules.

Electrons are odd particles: they have both wave and particle properties. Electron microscopy has been taking advantage of this phenomenon for roughly a century now and grants us a direct insight into the fundamental components of matter: molecules and atoms.


If ultrashort electron pulses hit a biomolecular crystal, they are diffracted from it. As a result, one obtains a characteristic diffraction image of the atomic structure.

Graphic: Alexander Gliserin

For a long time, still images were provided, but for some years now scientists are making tremendous progress in short-pulse technology. They create beams of electron pulses, which can, due to their extremely short flashing, provide us with very sharp images of moving atoms and electrons. Nevertheless, some of the fastest processes still remained blurred.

A team of the Laboratory for Attosecond Physics (LAP) from the Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ) has now managed to shorten electron pulses down to 28 femtoseconds in duration. One femtosecond is a millionth of a billionth of a second (10 to the minus 15 s). Such shutter speeds enable us to directly observe the truly fundamental motions of atoms and molecules in solids, similar to stroboscopy.

Those who want to explore the microcosm and its dynamics need a high-speed camera for atoms. In order to sharply capture motions of such particles during a reaction, one needs to work with “shutter speeds” in the range of femtoseconds, since this is the speed of reactions in molecules and solids. Commonly, femtosecond-short shutter speeds are provided by short-pulse laser technology, but laser light is not able to spatially resolve atoms.

Scientists from the Laboratory for Attosecond Physics at LMU and MPQ have now succeeded in producing ultrashort electron pulses with a duration of only 28 femtoseconds. This is six times shorter than ever before. The length of the matter wave is only about eight picometers; one picometer is a trillionth of a meter (10 to the minus 12 m).

Due to this short wavelength, it is possible to visualize even single atoms in diffraction experiments. If such electrons meet a molecule or atom, they are diffracted into specific directions due to their short wavelength. This way they generate an interference pattern at the detector from which an atomic 3D-structure of the examined substance is reconstructed. If the pulses are short enough, a sharp snapshot of the movement is the result.

To test the new technique, the physicists applied their ultrashort electron pulses to a biomolecule in a diffraction experiment. It is planned to use those electron beams for pump-probe experiments: an optical laser pulse is sent to the sample, initiating a response. Shortly afterwards the electron pulses produce a diffraction image of the structure at a sharp instant in time.

A large amount of such snapshots at varying delay times between the initiating laser pulses and the electron pulses then results in a film showing the atomic motion within the substance. Thanks to the sub-atomic wavelength of the electrons, one therefore obtains a spatial image as well as the dynamics. Altogether this results in a four-dimensional impression of molecules and their atomic motions during a reaction.

„With our ultrashort electron pulses, we are now able to gain a much more detailed insight into processes happening within solids and molecules than before“, Dr. Peter Baum says. „We are now able to record the fastest known atomic motions in four dimensions, namely in space and time“. Now the physicists aim to further reduce the duration of their electron pulses. The shorter the shutter speed becomes, the faster the motions which can be recorded. The aim of the scientists is to eventually observe even the much faster motions of electrons in light-driven processes. Thorsten Naeser

Original Publication:

A. Gliserin, M. Walbran, F. Krausz, P. Baum
Sub-phonon-period compression of electron pulses for atomic diffraction
Nature Communications, 27 October 2015, doi: 10.1038/ncomms9723

Contact:

Dr. Peter Baum
Max Planck Institute of Quantum Optics
Ludwig-Maximilians-Universität Munich
Am Coulombwall 1, 85748 Garching
Phone: +49 (0)89 / 289 - 14102
E-mail: peter.baum@lmu.de

Prof. Dr. Ferenc Krausz
Chair of Experimental Physics,
Ludwig-Maximilians-Universität Munich
Laboratory for Attosecond Physics
Director at Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>