Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

25.03.2015

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as it transitions into a superhot, highly compressed concoction known as “warm dense matter.”


SLAC National Accelerator Laboratory

This illustration shows a cutaway view of Jupiter, which is believed to contain "warm dense matter" at its core. A study at SLAC's Linac Coherent Light Source X-ray laser has provided the most detailed measurements yet of a material's temperature and compression as it transitions into this exotic state of matter.

Warm dense matter is the stuff believed to be at the cores of giant gas planets in our solar system and some of the newly observed “exoplanets” that orbit distant suns, which can be many times more massive than Jupiter. Their otherworldly properties, which stretch our understanding of planetary formation, have excited new interest in studies of this exotic state of matter.

The results of the SLAC study, published March 23 in Nature Photonics, could also lead to a greater understanding of how to produce and control nuclear fusion, which scientists hope to harness as a new source of energy.

“The heating and compression of warm dense matter has never been measured before in a laboratory with such precise timing,” says Siegfried Glenzer, a distinguished staff scientist who is part of the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC. “We have shown the detailed steps of how a solid hit by powerful lasers becomes a compressed solid and a dense plasma at the same time. This is a step on the path toward creating fusion in the lab.”

A team led by Glenzer used laser light to compress ultrathin aluminum foil samples to a pressure more than 4,500 times higher than the deepest ocean depths and superheat it to 20,000 kelvins – about four times hotter than the surface of the sun. SLAC’s Linac Coherent Light Source X-ray laser, a DOE Office of Science User Facility, then precisely measured the foil’s properties as it transformed into warm dense matter and then into a plasma – a very hot gas of electrons and supercharged atoms.

Warm dense matter remains largely mysterious because it is difficult to create and study in a laboratory, can exhibit properties of several types of matter and occupies a middle ground between solid and plasma. Our own sun is an example of a self-sustaining plasma, and plasmas have also been harnessed in some TV displays.

While warm dense matter is believed to exist in a stable state at the heart of giant planets, in a laboratory it lasts just billionths of a second. Scientists have relied largely on computer simulations, driven by scientific theories, to help explain how a solid, when shocked with powerful lasers, transforms into a plasma.

LCLS, with its complement of high-power lasers, is uniquely suited to creating and studying matter at the extremes. Its ultrabright X-ray pulses are measured in femtoseconds, or quadrillionths of a second, so it works like an ultra-high-speed X-ray camera to illuminate and record the properties of the most fleeting phenomena in atomic-scale detail.

In this experiment, researchers used a high-power optical laser at LCLS's Matter in Extreme Conditions experimental station to fire separate beams of green laser light simultaneously at both sides of coated, ultrathin aluminum foil samples, each just half the width of an average human hair. The lasers produced shock waves in the material that converged to create extreme temperatures and pressures.

Researchers struck the samples with X-rays just nanoseconds later, and varied the arrival time of the X-rays to essentially make a series of snapshots of warm dense matter formation. The team used a technique known as small angle X-ray scattering to measure the internal structure of the material, capturing its brief transition into the warm dense state.

“This early work with aluminum is a first stepping stone toward other problems we really need to solve,” Glenzer said, such as how hydrogen behaves under similar conditions. Hydrogen, which makes up about 75 percent of the visible mass of the universe, plays a central role in fusion, the process that powers stars. A better understanding of how hydrogen transitions into warm dense matter could help settle debates over conflicting theories on this transition and help unlock the secrets of fusion energy.

“I think LCLS can help to resolve the hydrogen ‘controversy,’ in upcoming experiments,” Glenzer said.

Participants in the research included scientists at SLAC, University of California Berkeley, Lawrence Livermore National Laboratory and General Atomics; QuantumWise A/S in Denmark; AWE plc, University of Warwick and University of Oxford in the U.K.; and the Max Planck Institute for the Physics of Complex Systems, Institute for Optics and Quantum Electronics, Friedrich-Schiller-University and GSI Helmholtz Center for Heavy Ion Research in Germany.

The work was supported by the DOE Office of Science, Fusion Energy Science; the DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Lawrence Livermore National Laboratory; a Laboratory Directed Research and Development grant; and the Peter-Paul-Ewald Fellowship of the VolkswagenStiftung.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact Information
Andrew Gordon
External Communications Manager
agordon@slac.stanford.edu
Phone: 650-926-2282
Mobile: 510-325-9303

Andrew Gordon | newswise

Further reports about: Accelerator Energy Sciences Laboratory Sciences X-ray dense laser light lasers

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>