Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic, gigantic molecules fit inside each other like Russian nesting dolls

23.01.2015

University of Chicago scientists have experimentally observed for the first time a phenomenon in ultracold, three-atom molecules predicted by Russian theoretical physicsist Vitaly Efimov in 1970.

In this quantum phenomenon, called geometric scaling, the triatomic molecules fit inside one another like an infinitely large set of Russian nesting dolls.


This illustration shows the sizes of triatomic molecules that follow the geometrical scaling predicted by Vitaly Efimov in 1970. University of Chicago physicists have reported evidence of this geometric scaling in three-atom, lithium-ceisum Efimov molecules at a temperature 200 nanokelvin, a fraction of a degree above absolute zero (minus 459.6 degrees Fahreneheit).

Credit: Cheng Chin group, University of Chicago

"This is a new rule in chemistry that molecular sizes can follow a geometric series, like 1, 2, 4, 8...," said Cheng Chin, professor in physics at UChicago. "In our case, we find three molecular states in this sequence where one molecular state is about 5 times larger than the previous one."

Chin and four members of his research group published their findings Dec. 9, 2014, in Physical Review Letters.

"Quantum theory makes the existence of these gigantic molecules inevitiable, provided proper--and quite challenging--conditions are created," said Efimov, now at the University of Washington.

The UChicago team observed three molecules in the series, consisting of one lithim atom and two cesium atoms in a vacuum chamber at the ultracold temperature of approximately 200 nanokelvin, a tiny fraction of a degree above absolute zero (minus 459.6 degrees Fahrenheit).

Infinitely large molecules

Given an infinitely large universe, the number of increasingly larger molecules in this cesium-lithium system also would extend to infinity. This remarkable idea stems from the exotic nature of quantum mechanics, which conforms confirms to different laws of physics than those that govern the universe on a macroscopic scale.

"These are certainly exotic molecules," said Shih-Kuang Tung, the postdoctoral scholar, now at Northwestern University, who led the project. Only under strict conditions could Tung and his colleagues see the geometric scaling in their Efimov molecules. It appears that neither two-atom nor four-atom molecules can achieve the Efimov state. "There's a special case for three atoms," Chin said.

Efimov's reaction to the research was twofold. "First, I am amazed by the predictive power of the quantum theory," he said. "Second, I am amazed by the skill of the experimentalists who managed to create those challenging conditions."

The finding is important because it shows that Efimov molecules, like other complex phenomena in nature, follow a simple mathematical rule. One other example in nature that displays geometric scaling are snowflakes, rooted in the microscopic physics of their hexagonal crystal structure.

A team at the University of Innsbruck in Austria, which included Chin, experimentally observed the first Efimov molecular state in 2006 in molecules consisting of three cesium atoms. In this Efimov state, three cesium atoms become entangled at temperatures slightly above absolute zero. They form a Borromean ring of three interlocking circles. Any two of them, however, will not interlock.

Chin switched his interest to lithium-cesium molecules in 2010 because observing geometrical scaling in the cesium system presented severe experimental difficulties.

Scaling factor

"The difficulty is that based on what we understand of Efimov's theory, the scaling factor is predicted to be 22.7 for the cesium system, which is a very large number," explained Chin, who also is a member of UChicago's James Franck and Enrico Fermi institutes. Scaling at such a large value demands an extremely low temperature, challenging to reach experimentally.

But the scaling factor of the lithium-cesium triatomic molecule was predicted to be more managable of 4.8. Indeed, after setting up their experiment, "We were able to see three of them at a more accessible temperature of 200 nano-Kelvin," Chin said. "Their sizes are measured to be 17, 86 and 415 nano-meters, respectively. They closely follow a geometric progression with the predicted scaling factor."

But even the lithium-cesium system presented a difficulty: the significantly differing masses of the two elements, which was critical for observing multiple Efimov states. Lithium is one of the lightest elements on the periodic table, while cesium is quite heavy. "One is really massive compared to the other," Tung said.

He compared working both elements into an ultracold experiment to dangling a monkey and an elephant from springs. They would hang at different levels, but they still needed to interact.

In the experiment, the UChicago physicists lowered the temperatures of the lithium and ceisum atoms separately, then brought them together to form the triatomic, Efimov molecules.

"It's a very complicated experiment," Tung said, one requiring an ultracold experimental tool called Feshbach resonance. Carried out in a magnetic field, Feshbach resonance allowed researchers to bind and control the interactions between the cesium and lithium atoms.

Cold atoms are subject to manipulation via Feshbach resonance, which allows the observation of geometric scaling. "Feshbach resonance is a really important tool for us," Tung said. He and his associates learned how to wield the tool effectively in the past three years.

"We needed to tune the Feshbach resonances very carefully in order to generate these Efimov molecules," Tung said.

The efforts culminated in experimental success. Efimov said the results made him feel like the parent of a successful child. "The parent is proud of the child's achievement, and he is also pround that in a sense he is part of the child's success."

Citation: "Geometric Scaling of Efimov States in a 6Li-133Cs Mixture," by Shih-Kuang Tung, Karina Jiménez-García, Jacob Johansen, Colin V. Parker, and Cheng Chin, Physical Review Letters, DOI: http://dx.doi.org/10.1103/PhysRevLett.113.240402

Funding: National Science Foundation and the Army Research Office.

Media Contact

Steve Koppes
skoppes@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Steve Koppes | EurekAlert!

Further reports about: Physical Review Letters cesium cesium atoms geometric physics temperature

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>