Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic, gigantic molecules fit inside each other like Russian nesting dolls

23.01.2015

University of Chicago scientists have experimentally observed for the first time a phenomenon in ultracold, three-atom molecules predicted by Russian theoretical physicsist Vitaly Efimov in 1970.

In this quantum phenomenon, called geometric scaling, the triatomic molecules fit inside one another like an infinitely large set of Russian nesting dolls.


This illustration shows the sizes of triatomic molecules that follow the geometrical scaling predicted by Vitaly Efimov in 1970. University of Chicago physicists have reported evidence of this geometric scaling in three-atom, lithium-ceisum Efimov molecules at a temperature 200 nanokelvin, a fraction of a degree above absolute zero (minus 459.6 degrees Fahreneheit).

Credit: Cheng Chin group, University of Chicago

"This is a new rule in chemistry that molecular sizes can follow a geometric series, like 1, 2, 4, 8...," said Cheng Chin, professor in physics at UChicago. "In our case, we find three molecular states in this sequence where one molecular state is about 5 times larger than the previous one."

Chin and four members of his research group published their findings Dec. 9, 2014, in Physical Review Letters.

"Quantum theory makes the existence of these gigantic molecules inevitiable, provided proper--and quite challenging--conditions are created," said Efimov, now at the University of Washington.

The UChicago team observed three molecules in the series, consisting of one lithim atom and two cesium atoms in a vacuum chamber at the ultracold temperature of approximately 200 nanokelvin, a tiny fraction of a degree above absolute zero (minus 459.6 degrees Fahrenheit).

Infinitely large molecules

Given an infinitely large universe, the number of increasingly larger molecules in this cesium-lithium system also would extend to infinity. This remarkable idea stems from the exotic nature of quantum mechanics, which conforms confirms to different laws of physics than those that govern the universe on a macroscopic scale.

"These are certainly exotic molecules," said Shih-Kuang Tung, the postdoctoral scholar, now at Northwestern University, who led the project. Only under strict conditions could Tung and his colleagues see the geometric scaling in their Efimov molecules. It appears that neither two-atom nor four-atom molecules can achieve the Efimov state. "There's a special case for three atoms," Chin said.

Efimov's reaction to the research was twofold. "First, I am amazed by the predictive power of the quantum theory," he said. "Second, I am amazed by the skill of the experimentalists who managed to create those challenging conditions."

The finding is important because it shows that Efimov molecules, like other complex phenomena in nature, follow a simple mathematical rule. One other example in nature that displays geometric scaling are snowflakes, rooted in the microscopic physics of their hexagonal crystal structure.

A team at the University of Innsbruck in Austria, which included Chin, experimentally observed the first Efimov molecular state in 2006 in molecules consisting of three cesium atoms. In this Efimov state, three cesium atoms become entangled at temperatures slightly above absolute zero. They form a Borromean ring of three interlocking circles. Any two of them, however, will not interlock.

Chin switched his interest to lithium-cesium molecules in 2010 because observing geometrical scaling in the cesium system presented severe experimental difficulties.

Scaling factor

"The difficulty is that based on what we understand of Efimov's theory, the scaling factor is predicted to be 22.7 for the cesium system, which is a very large number," explained Chin, who also is a member of UChicago's James Franck and Enrico Fermi institutes. Scaling at such a large value demands an extremely low temperature, challenging to reach experimentally.

But the scaling factor of the lithium-cesium triatomic molecule was predicted to be more managable of 4.8. Indeed, after setting up their experiment, "We were able to see three of them at a more accessible temperature of 200 nano-Kelvin," Chin said. "Their sizes are measured to be 17, 86 and 415 nano-meters, respectively. They closely follow a geometric progression with the predicted scaling factor."

But even the lithium-cesium system presented a difficulty: the significantly differing masses of the two elements, which was critical for observing multiple Efimov states. Lithium is one of the lightest elements on the periodic table, while cesium is quite heavy. "One is really massive compared to the other," Tung said.

He compared working both elements into an ultracold experiment to dangling a monkey and an elephant from springs. They would hang at different levels, but they still needed to interact.

In the experiment, the UChicago physicists lowered the temperatures of the lithium and ceisum atoms separately, then brought them together to form the triatomic, Efimov molecules.

"It's a very complicated experiment," Tung said, one requiring an ultracold experimental tool called Feshbach resonance. Carried out in a magnetic field, Feshbach resonance allowed researchers to bind and control the interactions between the cesium and lithium atoms.

Cold atoms are subject to manipulation via Feshbach resonance, which allows the observation of geometric scaling. "Feshbach resonance is a really important tool for us," Tung said. He and his associates learned how to wield the tool effectively in the past three years.

"We needed to tune the Feshbach resonances very carefully in order to generate these Efimov molecules," Tung said.

The efforts culminated in experimental success. Efimov said the results made him feel like the parent of a successful child. "The parent is proud of the child's achievement, and he is also pround that in a sense he is part of the child's success."

Citation: "Geometric Scaling of Efimov States in a 6Li-133Cs Mixture," by Shih-Kuang Tung, Karina Jiménez-García, Jacob Johansen, Colin V. Parker, and Cheng Chin, Physical Review Letters, DOI: http://dx.doi.org/10.1103/PhysRevLett.113.240402

Funding: National Science Foundation and the Army Research Office.

Media Contact

Steve Koppes
skoppes@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Steve Koppes | EurekAlert!

Further reports about: Physical Review Letters cesium cesium atoms geometric physics temperature

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>