Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Existence of a short-lived tetraneutron predicted

23.12.2016

Physicists have predicted the existence of a short-lived tetraneutron with unprecedented properties

A member of the Lomonosov Moscow State University together with his colleagues, using new interaction between neutrons, have theoretically justified the low-energy tertaneutron resonance obtained recently experimentally. This proves the existence for a very short period of time of a particle consisting of four neutrons. According to the supercomputer simulations, the tetraneutron lifetime is 5×10-22 sec. The research results are published in a top-ranked journal Physical Review Letters.


The image shows a tetraneutron.

Credit: Andrey Shirokov

A team, consisting of Russian, German and American scientists, and among them Andrey Shirokov, Senior Researcher at the Skobeltsyn Institute of Nuclear Physics, has calculated the energy of the resonant tetraneutron state. Their theoretical computations, based on a new approach and new interaction between neutrons, correlate with the results of the experiment in which the tetraneutron has been produced.

Searching for neutron stability

... more about:
»RIKEN »neutrons »nuclei »tetraneutron

A neutron lives about 15 min before it decays producing a proton, electron and antineutrino. There is also another known stable system consisting of a huge number of neutrons - a neutron star. Scientists have aimed to find out whether there are other systems, even short-lived, composed purely of neutrons.

A system made up of two neutrons doesn't form even a short-lived state. Due to multi-year experimental and fundamental researches, scientists conclude that there are no such states in a system made up of three neutrons. Searches for a tetraneutron, a cluster of four neutrons, have been conducted for more than 50 years. These searches were fruitless until 2002 when a group of French researchers in an experiment at the Large Heavy Ion National Accelerator (Grand accélérateur national d'ions lourds - GANIL) in Caen has found 6 events which could be interpreted as the tetraneutron production. However, the reproduction of this experiment failed, and some scientists suppose that at least a part of the original data analysis was incorrect.

A new phase of the tetraneutron searches takes place at the Radioactive Ion Beam Factoryin the RIKEN Institute, Japan, where a high-quality beam of 8He nuclei is available. The 8He nucleus consists of an α-particle (the 4He nuclei) and four neutrons. A few research teams from different countries have proposed the tetraneutron searches in RIKEN. In the first of these experimental searches, the 8He nuclei were bombarding the 4He target. As a result of the collision, the α-particle was knocked out from 8He leaving the system of 4 neutrons. Four events interpreted as the short-lived tetraneutron resonant statehave been detected. This experiment of the Japanese group has been published at the beginning of this year, and it will be continued.

How long could a tetraneutron live?

The scientist from Lomonosov Moscow State University and his collaborators have published in their article theoretical evaluations of the tetraneutron resonant state energy and its lifetime. They have contributed to the preparation of one of the proposed experimental searches for the tetraneutron when a group of experimentalists from Germany asked for the assistance.

Andrey Shirokov, the first author of the article, says: "Such evaluations were made by us in different models, and the obtained results were used to support the experiment application. Afterwards, we thoroughly elaborated thetheoretical approach and performed numerous simulations on supercomputers. The results have been published in our paper in Physical Review Letters".

The theoretical results for the energy of tetraneutron resonance of 0.84 MeV correlate well with the Japanese experimental findingof 0.83 MeV which is however characterized by a large uncertainty (about ±2 MeV). The calculated width of the resonant tetraneutron state is 1.4 MeV which corresponds to the lifetime of about 5×10-22 sec.

Andey Shirokov continues: "It's worth noting that none of theoretical papers up to now has predicted the existence of the resonant tetraneutron state at such low energies of about 1 MeV".

The new theoretical result probably stems from a new theoretical approach to the studies of resonant states in nuclear systems developed by the scientists. This approach has been carefully tested on model problems and in less complicated systems and only afterwards applied to the tetraneutron studies accounting for the specifics of the four-particle decay of this system.

Andrey Shirokov however indicates an alternative possibility: "Another possible reason is the fact that we've used a new interaction between neutrons elaborated by our team. Our tetraneutron studies will be continued, we'll perform simulations with other more traditional interactions. At the same time, our French colleagues are going to study thetetraneutron with our interaction within their approach. Of course, all of us are looking forward for the results of new experimental tetraneutron searches".

###

The research has been conducted by a large international team of theorists with Russia been represented by scientists not only from the Lomonosov Moscow State University, but also from the Pacific National University (Khabarovsk). This team includes also collaborators from USA and Germany. Researchers from South Korea are joining the group for future studies. The Russian side has been at the forefront of this research leading the elaboration of the theoretical approach to the resonant states and the design of the new interaction between particles in atomic nuclei.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

Further reports about: RIKEN neutrons nuclei tetraneutron

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>