Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence mounts for quantum criticality theory

02.02.2015

Findings bolster theory that quantum fluctuations drive strange electronic phenomena

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting a theory that strange electronic behaviors -- including high-temperature superconductivity and heavy fermion physics -- arise from quantum fluctuations of strongly correlated electrons.


A 'Fermi surface' is kind of three-dimensional map representing the collective energy states of electrons in a material. These computer-generated illustrations show how the Fermi surface for CeRhIn5 changes, depending upon whether the electrons are strongly interacting (left) or weakly interacting (right).

CREDIT: Q. Si/Rice University and J.X. Zhu/Los Alamos National Laboratory

The study, which appeared in the Jan. 20 issue of Proceedings of the National Academy of Sciences, describes results from a series of experiments on a layered composite of cerium, rhodium and indium. The experiments tested, for the first time, a prediction from a theory about the origins of quantum criticality that was published by Rice physicist Qimiao Si and colleagues in 2001.

"Our theory was a surprise at the time because it broke with the textbook framework and suggested that a broad range of phenomena -- including high-temperature superconductivity -- can only be explained in terms of the collective behavior of strongly correlated electrons rather than by the more familiar theory based on essentially decoupled electrons," said Si, a co-corresponding author on the new study and Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy.

Experimental evidence in support of the theory has mounted over the past decade, and the PNAS study fills yet another gap. In the experiments, researchers probed high-quality samples of a heavy-fermion material known as CeRhIn5.

Heavy fermion materials like CeRhIn5 are prototype systems for quantum criticality. In these materials, electrons tend to act in unison, and even one electron moving through the system causes widespread effects. This "correlated electron" behavior is very different from the electron interactions in a common metal like copper, and physicists have become increasingly convinced that correlated electron behavior plays an important role in phenomena like superconductivity and quantum criticality.

Quantum critical points, near which these strange correlated effects are particularly pronounced, mark a smooth phase change, or transition from one state of matter to another. Just as the melting of ice involves a transition from a solid to a liquid state, the electronic state of quantum materials changes when the material is cooled to a quantum critical point.

The critical temperature of a material can be raised or lowered if the material is chemically altered, placed under high pressure or put into a strong magnet. In the new experiments, which were carried out using the high magnetic field facilities at Los Alamos National Laboratory in New Mexico and at Florida State University, researchers observed a magnetically induced quantum critical point at ambient pressure and compared it to the previously studied case of a pressure-induced quantum critical point.

The nature of the quantum critical point was probed by something called the "Fermi surface," a sort of three-dimensional map that represents the collective energy states of all electrons in the material. When physicists have previously attempted to describe quantum phase transitions using traditional theories, equations dictate that the Fermi surface must change smoothly and gradually as the material passes through the critical point. In that case, most of the electrons on the Fermi surface are still weakly coupled to each other.

In contrast, Si's theory predicts that the Fermi surface undergoes a radical and instantaneous shift at the critical point. The electrons on the entire Fermi surface become strongly coupled, thereby giving rise to the strange-metal properties that allow unusual electronic states, including superconductivity.

"We observed exactly the sort of a sharp Fermi surface reconstruction predicted by theory of unconventional quantum criticality," said study co-author Frank Steglich, director of the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, and also of the Center for Correlated Matter at Zhejiang University in Hangzhou, China.

Zhejiang physicist Huiqiu Yuan, co-corresponding author on the study, said, "Our experiments demonstrate that direct measurements of a Fermi surface can distinguish theoretically proposed models of quantum criticality and point to a universal description of quantum phase transitions."

Heavy-fermion metals and high-temperature superconductors are examples of quantum matter, and the new research is an example of the pathbreaking, collaborative research that Rice hopes to foster with the new Rice Center for Quantum Materials.

Si, who also directs the new center, said, "Our study exemplifies the kind of progress in quantum materials that can be made through collaborations among theory, materials synthesis and spectroscopic measurements. At the Rice Center for Quantum Materials, we seek to foster this type of synergy, both internally at Rice University and through collaborations with our domestic and international partner institutions."

###

The research was supported by the National Science Foundation, the Department of Energy, the National Basic Research Program of China, the National Science Foundation of China, the German Research Foundation, the Zhejiang Provincial Natural Science Foundation, the State of Florida and the Robert A. Welch Foundation.

High-resolution images are available for download at:

http://news.rice.edu/wp-content/uploads/2015/01/0202_FERMI-vol-lg.jpg

CAPTION: A "Fermi surface" is kind of three-dimensional map representing the collective energy states of electrons in a material. These computer-generated illustrations show how the Fermi surface for CeRhIn5 changes, depending upon whether the electrons are strongly interacting (left) or weakly interacting (right).

CREDIT: Q. Si/Rice University and J.X. Zhu/Los Alamos National Laboratory

http://news.rice.edu/wp-content/uploads/2014/09/0929_RCQM-Si1-lg.jpg

CAPTION: Qimiao Si

CREDIT: Jeff Fitlow/Rice University

A copy of the PNAS paper is available at: http://www.pnas.org/content/112/3/673.full

Jade Boyd | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>