Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European XFEL prepares for user operation: Researchers can hand in first proposals for experiments

24.01.2017

For the first time, scientists from around the world can now submit their proposals for experiments at the European XFEL. The international science facility in the Hamburg metropolitan region published the first call for applications for “beamtime” on its website. The user programme is expected to begin in the second half of the year, with two of the planned six instruments being initially available.

An international panel of experts will review the proposals on the basis of scientific excellence. After successful review of their proposals, research groups are granted access to use the European XFEL—that is, the extremely brilliant X-ray light flashes at one of the facility’s instruments—for a few days for their research projects. Use of the facility is free of charge provided the results are made generally available through publication.


FXE instrument

The FXE instrument, which is currently being assembled in its hutch in the European XFEL experiment hall, will enable studies of ultrafast processes such as decisive intermediate steps of chemical reactions. The X-ray laser flashes enter the instrument from the right side of the picture and travel through a series of complex optics and diagnostics before arriving at the sample interaction region. A yellow robot arm for one of the instrument's detectors is seen in the background to the left.

Copyright: European XFEL

Like other X-ray light sources, the European XFEL is a research facility that provides capabilities and scientific knowhow for external researchers. The start of user operation will mark one of the final big milestones in the commissioning of the 3.4 km long X-ray laser.

The first two instruments in the experiment hall for which proposals can be submitted are the Femtosecond X-Ray Experiments (FXE) instrument and the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. FXE enables investigations of ultrafast processes and the creation of “molecular movies”, which show the progression of an individual reaction with high precision.

This will give impulses to many areas of research, including studies of mechanisms of various diseases at the molecular level, energy research, or the optimization of chemical processes. The second instrument, SPB/SFX, is specialized for research into biomolecules and other biological materials. Understanding the atomic-level details of biomolecules can enable the development of new medications and therapies. With the European XFEL, scientists will be able to determine structures from tiny crystals of biomolecules.

These crystals will be easier to create than the larger crystals needed for X-ray light sources up to now, which can take years or even decades to produce. In addition, it is expected that X-ray lasers in the medium term will also pave the way for structural determination of individual, uncrystallised molecules.

Currently, the European XFEL is in the process of being put into operation. The next steps that follow are the further commissioning of accelerator sections, the generation of X-ray laser light (first lasing), and the commissioning of the instruments. After the first experiment campaign starting in the fall, the equipment at the instruments and the options for experiments will be increased or further improved until the full capabilities of the European XFEL are reached.

The current programme for the first experiments is planned for a two-month period. The next announcement of experiment time is expected in summer 2017 for experiments in the first half of 2018. From 2018 on, four further instruments will be available, each of which is dedicated to specific applications and research themes.

More information about the announcement of experiment time can be found at www.xfel.eu 

About European XFEL

The European XFEL, currently being commissioned in the Hamburg area, is an international research facility of superlatives: 27 000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organizations worldwide. The company, which has a workforce of about 280 employees, expects to start user operation of the facility in the second half of 2017. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland.

Contact:
Bernd Ebeling
++49 8998 6921
bernd.ebeling@xfel.eu

Weitere Informationen:

http://media.xfel.eu/XFELmediabank/?l=en&c=15298 Picture of the FXE instrument

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>