Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European satellite could discover thousands of planets in Earth's galaxy

06.11.2014

A recently launched European satellite could reveal tens of thousands of new planets within the next few years, and provide scientists with a far better understanding of the number, variety and distribution of planets in our galaxy, according to research published today.

Researchers from Princeton University and Lund University in Sweden calculated that the observational satellite Gaia could detect as many as 21,000 exoplanets, or planets outside of Earth's solar system, during its five-year mission. If extended to 10 years, Gaia could detect as many as 70,000 exoplanets, the researchers report.


Princeton University and Lund University researchers project that the recently launched European satellite Gaia could discover tens of thousands of planets during its five-year mission. In this image, the colored portions indicate the number of observations Gaia would make of a particular part of the sky during its mission; the scale at the bottom indicates the number of observations from zero (purple) to 200 (red). The total number of observations of any part of the sky ranges from about 60 at low ecliptic latitudes to about 80 at high ecliptic latitudes, with a maximum of about 150-200 at intermediate latitudes. From these many different observations of each star, the highly accurate Gaia measurements will reveal the tiny star motion, or "wobble," that results from any orbiting planet.

Credit: Image by Lennart Lindegren, Lund University

The researchers' assessment is accepted in the Astrophysical Journal and was published Nov. 6 in advance-of-print on arXiv, a preprint database run by Cornell University.

Exoplanets will be an important "by-product" of Gaia's mission, Perryman said. Built and operated by the European Space Agency (ESA) and launched in December 2013, Gaia will capture the motion, physical characteristics and distance from Earth — and one another — of roughly 1 billion objects, mostly stars, in the Milky Way galaxy with unprecedented precision. The presence of an exoplanet will be determined by how its star "wobbles" as a result of the planet's orbit around it.

More important than the numbers of predicted discoveries are the kinds of planets that the researchers expect Gaia to detect, many of which — such as planets with multi-year orbits that pass directly, or transit, in front of their star as seen from Earth — are currently difficult to find, explained first author Michael Perryman, an adviser on large scientific programs who made the assessment while serving as Princeton's Bohdan Paczyński Visiting Fellow in the Department of Astrophysical Sciences.

The satellite's instruments could reveal objects that are considered rare in the Milky Way, such as an estimated 25 to 50 Jupiter-sized planets that orbit faint, low-mass stars known as red dwarfs. Unique planets and systems — such as planets that orbit in the opposite direction of their companions — can inspire years of research, Perryman said.

"It's not just about the numbers. Each of these planets will be conveying some very specific details, and many will be highly interesting in their own way," Perryman said. "If you look at the planets that have been discovered until now, they occupy very specific regions of discovery space. Gaia will not only discover a whole list of planets, but in an area that has not been thoroughly explored so far."

Ultimately, a comprehensive census allows scientists to more accurately determine how many planets and planetary systems exist, the detailed properties of those planets, and how they are positioned throughout the galaxy, Perryman said.

Perryman worked with Joel Hartman, an associate research scholar in Princeton's astrophysical sciences department, Gáspár Bakos, an associate professor of astrophysical sciences, and Lennart Lindegren, a professor of astronomy at Lund University. Gaia is based on a satellite proposal led by Lindegren and Perryman that was submitted to the ESA in 1993.

Research on exoplanets has increased dramatically in the 15 years since Gaia was accepted by the ESA in 2000. The new estimate is based on a highly detailed model of how stars and planets are positioned in the Milky Way; more accurate details of Gaia's measurement and data-analysis capabilities; and current estimates of exoplanet distributions, particularly those derived from NASA's Kepler satellite, which has identified nearly 1,000 confirmed planets and more than 3,000 candidates. Crucial to conducting the assessment is the much-improved knowledge that now exists about distant planets, Perryman said, such as the types of stars that exoplanets orbit.

The first exoplanet was detected in 1995. Nearly 1,900 have since been discovered. Bakos, who focuses much of his research on exoplanets, launched and oversees HATNet (Hungarian-made Automated Telescope Network) and HATSouth, planet-hunting networks of fully automated, small-scale telescopes installed on four continents that scan the sky every night for planets as they transit in front of their parent star. The projects have discovered more than 50 planets since 1999.

"Our assessment will help prepare exoplanet researchers for what to expect from Gaia," Perryman said. "We're going to be adding potentially 20,000 new planets in a completely new area of discovery space. It's anyone's guess how the field will develop as a result."

Michael Perryman, Joel Hartman, Gáspár Bakos and Lennart Lindegren. 2014. Astrometric exoplanet detection with Gaia. Astrophysical Journal. Arti¬cle first pub-lished to the Cornell University arXiv preprint database: Nov. 6, 2014.

This work was partly supported by the National Science Foundation (grant no. 1108686) and NASA (grant no. NNX13AJ15G).

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>