Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endless oscillations

28.05.2015

Destined never to relax: A theoretical study on quantum systems

A quantum system never relaxes. An isolated system (like a cloud of cold atoms trapped in optical grids) will endlessly oscillate between its different configurations without ever finding peace. In practice, these types of systems are unable to dissipate energy in any form.

This is the exact opposite of what happens in classical physics, where the tendency to reach a state of equilibrium is such a fundamental drive that is has been made a fundamental law of physics, i.e., the second law of thermodynamics, which introduces the concept of entropy.

This profound difference is the subject of a study published in Physical Review A, conducted with the collaboration of the International School of Advanced Studies (SISSA) of Trieste and the University of Oxford. Giuseppe Mussardo, professor at SISSA, together with Milosz Panfil, SISSA research fellow, and Fabian Essler from the University of Oxford carried out a theoretical analysis with which they demonstrated the peculiarity of one-dimensional quantum systems, as well as explaining the non-local nature of these systems.

"The main point of our work was not only realizing the dramatic difference between classical and quantum reality," explains Mussardo, "but also discovering the existence of quantum systems that are extremely robust with respect to any external stimulus, thanks to their specific laws of symmetry.

These laws, in particular, demand not only the conservation of energy but also of innumerable other quantities, which maintain the same value over time as a result".

Mussardo and colleagues also made another discovery: to be able to predict the evolution of quantum systems and their statistical characteristics, we should think of them as being defined not by every point in space (and therefore continuous) but only by discrete points.

It is as if these systems lived "intrinsically" on a grid, explains Mussardo (who also adds that "this came as a big surprise"), "so that on a large scale we have to take into account non-local effects".

This study, as well as shedding light on some peculiar effects revealed by recent experiments on mixtures of cold atoms and spin chains, opens up interesting scenarios on the control of extensive quantum systems and their use for future memory architectures and quantum algorithms.

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-378-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>