Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endless oscillations

28.05.2015

Destined never to relax: A theoretical study on quantum systems

A quantum system never relaxes. An isolated system (like a cloud of cold atoms trapped in optical grids) will endlessly oscillate between its different configurations without ever finding peace. In practice, these types of systems are unable to dissipate energy in any form.

This is the exact opposite of what happens in classical physics, where the tendency to reach a state of equilibrium is such a fundamental drive that is has been made a fundamental law of physics, i.e., the second law of thermodynamics, which introduces the concept of entropy.

This profound difference is the subject of a study published in Physical Review A, conducted with the collaboration of the International School of Advanced Studies (SISSA) of Trieste and the University of Oxford. Giuseppe Mussardo, professor at SISSA, together with Milosz Panfil, SISSA research fellow, and Fabian Essler from the University of Oxford carried out a theoretical analysis with which they demonstrated the peculiarity of one-dimensional quantum systems, as well as explaining the non-local nature of these systems.

"The main point of our work was not only realizing the dramatic difference between classical and quantum reality," explains Mussardo, "but also discovering the existence of quantum systems that are extremely robust with respect to any external stimulus, thanks to their specific laws of symmetry.

These laws, in particular, demand not only the conservation of energy but also of innumerable other quantities, which maintain the same value over time as a result".

Mussardo and colleagues also made another discovery: to be able to predict the evolution of quantum systems and their statistical characteristics, we should think of them as being defined not by every point in space (and therefore continuous) but only by discrete points.

It is as if these systems lived "intrinsically" on a grid, explains Mussardo (who also adds that "this came as a big surprise"), "so that on a large scale we have to take into account non-local effects".

This study, as well as shedding light on some peculiar effects revealed by recent experiments on mixtures of cold atoms and spin chains, opens up interesting scenarios on the control of extensive quantum systems and their use for future memory architectures and quantum algorithms.

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-378-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>