Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons surfing on a laser beam

10.10.2017

The largest particle accelerator in the world – the Large Hadron Collider at CERN in Switzerland – has a circumference of around 26 kilometres. Researchers at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany, are attempting to go to the other extreme by building the world's smallest machine of this kind – a particle accelerator that fits on a microchip. The research team has now taken another step towards achieving this ambition.

The fundamental idea behind the miniature particle accelerator’s development is to enable scientists to use laser beams to accelerate electrons. What sounds deceptively simple in theory raises a whole series of challenges in practice, extending across various fields of physics.


For example, the scientists need to be able to control the oscillation of light and the movement of electrons with great precision in order to ensure that they meet each other at just the right moment.

One way of envisaging this is to imagine a ship on a stormy sea; to safely ascend the wave and come down on its other side, the helmsman has to watch the oncoming wave and judge when it will meet the vessel.

It is equally crucial for the FAU’s team of scientists to ascertain when and where the maximum crest of a light wave will hit a packet of electrons so that they can influence the outcome to a highly specific degree. This means they need to enable light and electrons to coincide within ‘attoseconds’ – that is, a billionth of a billionth of a second.

In an exciting first, this is exactly what the research group around FAU’s Prof. Dr. Peter Hommelhoff have succeeded in achieving. The team has developed a new technique involving the intersection of two laser beams oscillating at different frequencies in order to generate an optical field whose properties the researchers can influence to an extremely precise degree.

The key property of this optical field is that it retains contact with the electrons, effectively moving with them – hence its being termed a travelling wave – so the electrons can continuously sense, or ‘surf’, the optical field. In this way, the optical field transmits its properties exactly to the particles.

Not only does this process cause the particles to precisely reflect the field structure, it also accelerates them – to a strikingly high degree. This effect is crucial to the miniature particle accelerator’s practical application, as it relates to how much energy can be transferred to the electrons across what distance. The acceleration gradient, which indicates the maximum measured electron energy gain versus distance covered, reaches the extremely high value of 2.2 giga-electron-volts per metre, much higher than that attained by conventional accelerators.

However, the acceleration distance of only 0.01 millimetres currently available to the research team in Erlangen is not sufficient for them to generate the energy needed for achieving results of relevance to practical applications. ‘Despite this, for particle accelerators in medicine, we would only need a tiny acceleration length of less than a millimetre,’ explains Dr Martin Kozák, who carried out the laboratory experiment.

Particle accelerator on a microchip

Project lead Prof. Dr. Peter Hommelhoff of the Chair of Laser Physics at FAU considers accelerator miniaturisation to be a technical revolution analogous to the development of computers, which went from occupying entire rooms to fitting on people’s wrists. ‘This approach will hopefully enable us to make this innovative particle acceleration technique usable in a range of research areas and fields of application such as materials science, biology and medicine; one example might be particle therapies for cancer patients.’

In 2015, the FAU researchers teamed up with scientists from Stanford University and eight other international partner institutions in the Accelerator on a Chip International Program (ACHIP). The Gordon and Betty Moore Foundation has generously provided five years’ funding to the project; of the total grant of 13.5 million dollars (approximately 12.5 million euro), 2.44 million dollars (approximately 2.26 million euro) went to FAU.

The research team’s findings have now been published in the leading scientific journal Nature Physics (doi: 10.1038 / nphys4282).

Further information:
Prof. Dr. Peter Hommelhoff
Phone: +49 9131 8527090
peter.hommelhoff@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>