Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electricity that comes from noise


Computers generate heaps of surplus heat. Components that use this energy sensibly were already foreseen a few years ago. Now, physicists from the University of Würzburg have managed to create such parts in the laboratory.

The smaller and more powerful that computer chips are the more heat they produce. This causes financial problems, because cooling costs money.

A new development by Würzburg physicists can produce a rectified current from differences in temperature. This means, for example, that sensor networks can be supplied with energy.

Graphic: Fabian Hartmann

For this reason, Google is keen to build new server farms in northern latitudes, such as Finland, where the Arctic cold keeps the servers at low temperatures virtually by itself. Excessive heat generation imposes limits on progressive miniaturization, making it difficult to develop even smaller and more powerful processors.

Publication in Physical Review Letters

The fact that this energy could be used in a special way to produce electricity was foreseen theoretically by physicists from the University of Geneva a few years ago. Now, a team of physicists at the University of Würzburg have succeeded in translating this theory into practice.

Scientists at the Department of Applied Physics under Professor Lukas Worschech and Professor Sven Höfling have created a component that is capable of producing a rectified current from differences in temperature. The scientists have presented their work in the journal Physical Review Letters.

“With our component we generate energy from random movements,” says Dr. Fabian Hartmann to explain the underlying principle. In this case, this involves movements of electrons in structures that are only a few billionths of a meter in size. The greater the fluctuations in this structure, the more intense the random movements are – the physicist speaks of “noise”. “Where the heat is great we find a high level of noise. In colder areas the noise is lower,” explains Hartmann. The trick now is to produce a rectified current from this difference.

A two-dimensional electron gas

At the Gottfried-Landwehr-Laboratory for Nanotechnology at the University of Würzburg, the physicists “created” a structure referred to in the technical jargon as a “quantum dot”. This involved building an aluminum gallium arsenide heterostructure in layers on a carrier material that is only a few micrometers in size. Then onto this there they etched special structures in which electrons can move around.

However, the gap that offers the electrons room is only a few nanometers wide. This therefore creates a two-dimensional electron gas in which the directions of movement are heavily restricted. “In doing this we achieve very high electron mobility in a defined area without scattering processes,” is how Hartmann outlines the result. If you then bring two of these quantum dots of different temperatures close together, this produces the desired effect: Random movement, high-level noise on one side, generates directed movement on the other – a direct current.

Better than thermoelectric elements

It was, of course, already possible to generate energy from differences in temperature in the form of electricity. “Thermoelectric elements,” as they are called, are capable of this. The spectrum of possibilities ranges from the wristwatch, which receives its drive energy from the small difference in temperature between ambient air and body heat, to thermoelectric units, which use waste heat from a combustion process, and all the way through to the space probe Cassini, which converts the decay heat of Plutonium-238 into electrical energy.

However, the physicists believe that thermoelectric elements have a serious disadvantage: “With them, heat flow and electrical current are rectified,” explains Fabian Hartmann. This means that while they produce electricity, these materials automatically reduce the difference in temperature until the difference has disappeared. As a result, electricity can no longer flow.

“With our construction elements, on the other hand, these two processes are made independent of one another. The differences in temperature are therefore easier to maintain,” says Hartmann.

Low energy efficiency with potential

The energy efficiency of the components sounds to the layman like it is barely anything. Around 20 picowatts is the power from such an element, says the physicist. 50 billion of them generate as much as one watt. Is the development of these parts, therefore, just a gimmick in the laboratory?

Absolutely not, says Hartmann. For one thing, a common processor already has more than one billion transistors, which all produce heat. For another, it is one of the goals of his work to supply autonomous sensor networks with energy in this manner! And only a few microwatts were needed to achieve this.

Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech. DOI: 10.1103/PhysRevLett.114.146805


Dr. Fabian Hartmann, Department of Applied Physics, T: +49 (0)931 31-88579, e-mail:

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>