Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity that comes from noise

12.05.2015

Computers generate heaps of surplus heat. Components that use this energy sensibly were already foreseen a few years ago. Now, physicists from the University of Würzburg have managed to create such parts in the laboratory.

The smaller and more powerful that computer chips are the more heat they produce. This causes financial problems, because cooling costs money.


A new development by Würzburg physicists can produce a rectified current from differences in temperature. This means, for example, that sensor networks can be supplied with energy.

Graphic: Fabian Hartmann

For this reason, Google is keen to build new server farms in northern latitudes, such as Finland, where the Arctic cold keeps the servers at low temperatures virtually by itself. Excessive heat generation imposes limits on progressive miniaturization, making it difficult to develop even smaller and more powerful processors.

Publication in Physical Review Letters

The fact that this energy could be used in a special way to produce electricity was foreseen theoretically by physicists from the University of Geneva a few years ago. Now, a team of physicists at the University of Würzburg have succeeded in translating this theory into practice.

Scientists at the Department of Applied Physics under Professor Lukas Worschech and Professor Sven Höfling have created a component that is capable of producing a rectified current from differences in temperature. The scientists have presented their work in the journal Physical Review Letters.

“With our component we generate energy from random movements,” says Dr. Fabian Hartmann to explain the underlying principle. In this case, this involves movements of electrons in structures that are only a few billionths of a meter in size. The greater the fluctuations in this structure, the more intense the random movements are – the physicist speaks of “noise”. “Where the heat is great we find a high level of noise. In colder areas the noise is lower,” explains Hartmann. The trick now is to produce a rectified current from this difference.

A two-dimensional electron gas

At the Gottfried-Landwehr-Laboratory for Nanotechnology at the University of Würzburg, the physicists “created” a structure referred to in the technical jargon as a “quantum dot”. This involved building an aluminum gallium arsenide heterostructure in layers on a carrier material that is only a few micrometers in size. Then onto this there they etched special structures in which electrons can move around.

However, the gap that offers the electrons room is only a few nanometers wide. This therefore creates a two-dimensional electron gas in which the directions of movement are heavily restricted. “In doing this we achieve very high electron mobility in a defined area without scattering processes,” is how Hartmann outlines the result. If you then bring two of these quantum dots of different temperatures close together, this produces the desired effect: Random movement, high-level noise on one side, generates directed movement on the other – a direct current.

Better than thermoelectric elements

It was, of course, already possible to generate energy from differences in temperature in the form of electricity. “Thermoelectric elements,” as they are called, are capable of this. The spectrum of possibilities ranges from the wristwatch, which receives its drive energy from the small difference in temperature between ambient air and body heat, to thermoelectric units, which use waste heat from a combustion process, and all the way through to the space probe Cassini, which converts the decay heat of Plutonium-238 into electrical energy.

However, the physicists believe that thermoelectric elements have a serious disadvantage: “With them, heat flow and electrical current are rectified,” explains Fabian Hartmann. This means that while they produce electricity, these materials automatically reduce the difference in temperature until the difference has disappeared. As a result, electricity can no longer flow.

“With our construction elements, on the other hand, these two processes are made independent of one another. The differences in temperature are therefore easier to maintain,” says Hartmann.

Low energy efficiency with potential

The energy efficiency of the components sounds to the layman like it is barely anything. Around 20 picowatts is the power from such an element, says the physicist. 50 billion of them generate as much as one watt. Is the development of these parts, therefore, just a gimmick in the laboratory?

Absolutely not, says Hartmann. For one thing, a common processor already has more than one billion transistors, which all produce heat. For another, it is one of the goals of his work to supply autonomous sensor networks with energy in this manner! And only a few microwatts were needed to achieve this.

Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech. DOI: 10.1103/PhysRevLett.114.146805

Contact

Dr. Fabian Hartmann, Department of Applied Physics, T: +49 (0)931 31-88579, e-mail: fhartmann@physik.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>