Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein-Podolsky-Rosen paradox observed in many-particle system for the first time

27.04.2018

Physicists from the University of Basel have observed the quantum mechanical Einstein-Podolsky-Rosen paradox in a system of several hundred interacting atoms for the first time. The phenomenon dates back to a famous thought experiment from 1935. It allows measurement results to be predicted precisely and could be used in new types of sensors and imaging methods for electromagnetic fields. The findings were recently published in the journal Science.

How precisely can we predict the results of measurements on a physical system? In the world of tiny particles, which is governed by the laws of quantum physics, there is a fundamental limit to the precision of such predictions. This limit is expressed by the Heisenberg uncertainty relation, which states that it is impossible to simultaneously predict, for example, the measurements of a particle’s position and momentum, or of two components of a spin, with arbitrary precision.


A cloud of atoms is held above a chip by electromagnetic fields. The EPR paradox was observed between the spatially separated regions A and B.

Illustration: University of Basel, Department of Physics

A paradoxical decrease in uncertainty

In 1935, however, Albert Einstein, Boris Podolsky, and Nathan Rosen published a famous paper in which they showed that precise predictions are theoretically possible under certain circumstances. To do so, they considered two systems, A and B, in what is known as an “entangled” state, in which their properties are strongly correlated.

In this case, the results of measurements on system A can be used to predict the results of corresponding measurements on system B with, in principle, arbitrary precision. This is possible even if systems A and B are spatially separated. The paradox is that an observer can use measurements on system A to make more precise statements about system B than an observer who has direct access to system B (but not to A).

First observation in a many-particle system

In the past, experiments have used light or individual atoms to study the EPR paradox, which takes its initials from the scientists who discovered it. Now, a team of physicists led by Professor Philipp Treutlein of the Department of Physics at the University of Basel and the Swiss Nanoscience Institute (SNI) has successfully observed the EPR paradox using a many-particle system of several hundred interacting atoms for the first time.

The experiment used lasers to cool atoms to just a few billionths of a degree above absolute zero. At these temperatures, the atoms behave entirely according to the laws of quantum mechanics and form what is known as a Bose-Einstein condensate – a state of matter that Einstein predicted in another pioneering paper in 1925. In this ultracold cloud, the atoms constantly collide with one another, causing their spins to become entangled.

The researchers then took measurements of the spin in spatially separated regions of the condensate. Thanks to high-resolution imaging, they were able to measure the spin correlations between the separate regions directly and, at the same time, to localize the atoms in precisely defined positions. With their experiment, the researchers succeeded in using measurements in a given region to predict the results for another region.

“The results of the measurements in the two regions were so strongly correlated that they allowed us to demonstrate the EPR paradox,” says PhD student Matteo Fadel, lead author of the study. “It’s fascinating to observe such a fundamental phenomenon of quantum physics in ever larger systems. At the same time, our experiments establish a link between two of Einstein’s most important works.”

On the path towards quantum technology

In addition to their basic research, the scientists are already speculating about possible applications for their discovery. For example, the correlations that are at the heart of the EPR paradox could be used to improve atomic sensors and imaging methods for electromagnetic fields. The development of quantum sensors of this kind is one objective of the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), in which the team of researchers is actively involved.

Original source

Matteo Fadel, Tilman Zibold, Boris Décamps, and Philipp Treutlein
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates
Science (2018), doi: 10.1126/science.aao1850

Further information

Prof. Dr. Philipp Treutlein, University of Basel, Department of Physics, phone: +41 61 207 37 66, email: philipp.treutlein@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>