New, Efficient Transistor Could One Day Power Laptops, Cars

Junxia Shi, a graduate student in the laboratory of Lester Eastman, the John Given Foundation Professor of Engineering, developed the gallium nitride-based device, which could form the basis for the circuitry in products from laptops to hybrid vehicles to windmills to other power electronic systems.

The patent-pending device is a basic electrical switch made from the compound gallium nitride, a material with unique electrical properties that Eastman and colleagues have been studying for more than a decade. Research on their recent breakthrough was published in the journal Applied Physics Letters (July 28, 2009).

The new transistor’s on-resistance, or measure of resistance to electric current, is 10 to 20 times lower than today’s silicon-based power devices. It also has a high breakdown voltage, which is a measure of how much voltage can be applied across a material before it fails.

The key to the device lie in gallium nitride’s low electrical resistance, causing less power loss to heat, and its ability to handle up to 3 million volts per centimeter without electrical failure. Silicon, a competing material, can handle only about 250,000 volts per centimeter.

At the heart of improving electronics, Eastman said, is the ability to make devices that can switch electricity from high voltage to high current, which is a measurement of electrical applicability, while minimizing power loss.

“Power has to go from A to B in a machine with a high voltage transmission line to minimize power loss,” Eastman said. “Before now, there were no electronic devices that could handle both high current and the high voltage, but our device can do it.”

The transistors, which were made with Cornell nanofabrication equipment, might one day power everything from hybrid electric vehicles to Navy destroyers. In fact, the U.S. Navy first funded Cornell’s research into gallium nitride transistors more than 10 years ago and is a major funder of Eastman’s research today.

In next-generation electrical devices, “you want to have the power that’s coming out to be not much less than the power that’s going in,” Eastman said. “This is the best material we know of that can do this conversion without loss of energy.”

Shi and Eastman have a provisional patent on their device. The New Jersey-based company Velox and Motorola spinoff Freescale have also helped fund the research, with the hope of producing the devices at an industrial scale.

Media Contact

Blaine Friedlander Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors