Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual frequency comb generated on a single chip using a single laser

05.03.2018

Columbia Engineers are the first to miniaturize dual-frequency combs by putting two frequency comb generators on a single millimeter-sized silicon-based chip; could lead to low-cost, portable sensing, and spectroscopy in the field in real-time.

In a new paper published today in Science Advances, researchers under the direction of Columbia Engineering Professors Michal Lipson and Alexander Gaeta (Applied Physics and Applied Mathematics) have miniaturized dual-frequency combs by putting two frequency comb generators on a single millimeter-sized chip.


A compact, integrated, silicon-based chip used to generate dual combs for extremely fast molecular spectroscopy.

Credit: A. Dutt, A. Mohanty, E. Shim, G. Patwardhan/Columbia Engineering

"This is the first time a dual comb has been generated on a single chip using a single laser," says Lipson, Higgins Professor of Electrical Engineering.

A frequency comb is a special kind of light beam with many different frequencies, or "colors," all spaced from each other in an extremely precise way. When this many-color light is sent through a chemical specimen, some colors are absorbed by the specimen's molecules. By looking at which colors have been absorbed, one can uniquely identify the molecules in the specimen with high precision. This technique, known as frequency-comb spectroscopy, enables molecular fingerprinting and can be used to detect toxic chemicals in industrial areas, to implement occupational safety controls, or to monitor the environment.

"Dual-comb spectroscopy is this technique put on steroids," says Avik Dutt, former student in Lipson's group (now a postdoctoral scholar at Stanford) and lead author of the paper. "By mixing two frequency combs instead of a single comb, we can increase the speed at which measurement are made by thousandfolds or more."

The work also demonstrated the broadest frequency span of any on-chip dual comb?i.e., the difference between the colors on the low-frequency end and the high-frequency end is the largest. This span enables a larger variety of chemicals to be detected with the same device, and also makes it easier to uniquely identify the molecules: the broader the range of colors in the comb, the broader the diversity of molecules that can see the colors.

Conventional dual-comb spectrometers, which have been introduced over the last decade, are bulky tabletop instruments, and not portable due to their size, cost, and complexity. In contrast, the Columbia Engineering chip-scale dual comb can easily be carried around and used for sensing and spectroscopy in field environments in real time.

"There is now a path for trying to integrate the entire device into a phone or a wearable device," says Gaeta, Rickey Professor of Applied Physics and of Materials Science.

The researchers miniaturized the dual comb by putting both frequency comb generators on a single millimeter-sized chip. They also used a single laser to generate both the combs, rather than the two lasers used in conventional dual combs, which reduced the experimental complexity and removed the need for complicated electronics. To produce miniscule rings?tens of micrometers in diameter?that guide and enhance light with ultralow loss, the team used silicon nitride, a glass-like material they have perfected specifically for this purpose. By combining the silicon nitride with platinum heaters, they were able to very finely tune the rings and make them work in tandem with the single input laser.

"Silicon nitride is a widely used material in the silicon-based semiconductor industry that builds computer/smartphone chips," Lipson notes. "So, by leveraging the capabilities of this mature industry, we can foresee reliable fabrication of these dual comb chips on a massive scale at a low cost."

Using this dual comb, Lipson's and Gaeta's groups demonstrated real-time spectroscopy of the chemical dichloromethane at very high speeds, over a broad frequency range. A widely used organic solvent, dichloromethane is abundant in industrial areas as well as in wetland emissions. The chemical is carcinogenic, and its high volatility poses acute inhalation hazards. Columbia Engineering's compact, chip-scale dual comb spectrometer was able to measure a broad spectrum of dichloromethane in just 20 microseconds (there are 1,000,000 microseconds in one second), a task that would have taken at least several seconds with conventional spectrometers.

As opposed to most spectrometers, which focus on gas detection, this new, miniaturized spectrometer is especially suited for liquids and solids, which have broader absorption features than gases?the range of frequencies they absorb is more spread out. "That's what our device is so good at generating," Gaeta explains. "Our very broad dual combs have a moderate spacing between the successive lines of the frequency comb, as compared to gas spectrometers which can get away with a less broad dual comb but need a fine spacing between the lines of the comb."

The team is working on broadening the frequency span of the dual combs even further, and on increasing the resolution of the spectrometer by tuning the lines of the comb. In a paper published last November in Optics Letters, Gaeta's and Lipson's groups demonstrated some steps towards showing an increased resolution.

"One could also envision integrating the input laser into the chip for further miniaturizing the system, paving the way for commercializing this technology in the future," says Dutt.

###

About the Study

The study is titled "On-chip dual comb source for spectroscopy."

Authors are: Avik Dutt, Chaitanya Joshi, and Xingchen Ji (Columbia Engineering and Cornell University); Jaime Cardenas (Columbia Engineering, now at University of Rochester); Kevin Luke (Cornell University); Yoshitomo Okawachi, Alexander L. Gaeta, and Michal Lipson (Columbia Engineering).

The study was funded by the Defense Advanced Research Projects Agency (N66001-16-1-4052, W31P4Q-15-1-0015) and the Air Force Office of Scientific Research (FA9550-15-1-0303). The chips were fabricated at the Cornell Nanoscale Facility.

The authors declare that they have no competing interests.

LINKS:

Paper: http://advances.sciencemag.org/content/4/3/e1701858

DOI: 10.1126/sciadv.1701858

http://engineering.columbia.edu/

http://www.ee.columbia.edu/michal-lipson

http://apam.columbia.edu/alexander-l-gaeta

https://www.osapublishing.org/ol/abstract.cfm?uri=ol-42-21-4442

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 200 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Holly Evarts | EurekAlert!

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>