Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug or duplicate?

23.03.2018

Imagine holding two different medications in your hands, one being the original, the other one being a counterfeit. Both appear exactly the same. Is there any way for you to distinguish them? The answer is: yes. Our quantum cascade laser (QCL) has the ability to identify substances in a split second.

The technology behind the innovation is called backscattering spectroscopy. It exploits the fact that every chemical substance absorbs an individual amount of infrared light. »If we irradiate a substance with a specific light source, we receive a very characteristic backscattering signal« describes Dr. Ralf Ostendorf, head of the Business Unit »Semiconductor Lasers« at the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg.


Miniaturized wavelength tunable μEC-QCL with emission wavelengths in the mid-infrared range and a high scanning frequency up to 1 kHz.

Photo: © Fraunhofer IAF

The mid-infrared spectrum (MIR) is particularly well-suited for an unambiguous identification of substances. Within this spectrum, light has a wavelength of three to 12 micrometers. If molecules are irradiated with this light, they show a characteristic absorption behavior which the QCL measuring system picks up on.

In only a few milliseconds the QCL can be adjusted to individual absorption lines that lie within a broad spectral band. This means that a great deal of information about a substance’s absorption behavior can be detected in a very short time.

»Very precise conclusions are available due to the laser’s high spectral brilliance and the fast wavelength tuning - similar to a human fingerprint« explains Ostendorf. The developed QCL consequently manages to detect even the smallest amounts of a particular substance in real time, which is a significant improvement compared to previous systems.

A mobile measuring system for in-line process monitoring

The miniaturized quantum cascade lasers are being developed by scientists at the Fraunhofer IAF together with colleagues from the Fraunhofer Institute for Photonic Microsystems IPMS in Dresden. Fraunhofer IAF is working on the laser chips while Fraunhofer IPMS is responsible for an integrated MOEMS scanning grating. The MOEMS scanner allows continuous tuning of the wavelength and thus allows a very fast signal response.

Currently, the project team is making the lasers fit for application in the pharmaceutical industry. The researchers have already used their method to reliably determine the active ingredients of everyday pills for headaches and fever in a laboratory environment. Future application scenarios foresee the technology in the mass production of pharmaceuticals as a real-time control. Already during the production process defective medical preparations could be sorted out.

»Not only is it possible to quickly sort out faulty margins, but also to reliably detect drug plagiarism. A time-consuming and expensive manual control in the laboratory would be obsolete« Ostendorf sums up the added value.

The method was first used in security technology: In the EU project »CHEQUERS«, Fraunhofer IAF developed a portable detector based on quantum cascade lasers which can detect explosive or toxic substances from a safe distance. The Freiburg researchers are currently contacting industry partners in order to further develop their approach. Ostendorf outlines future challenges: »Initial talks have already taken place. In a next step, we want to use our sensors to detect individual substances in a drug mixture«.

Weitere Informationen:

https://www.iaf.fraunhofer.de/en/events/analytica_2018.html (Fraunhofer IAF at Analytica 2018)
https://www.iaf.fraunhofer.de/en/research/optoelectronic-devices.html (Optoelectronic devices)
https://www.iaf.fraunhofer.de/en/offers/semiconductor-lasers/mirphab.html (Pilotline for photonic components »MirPhab«)
https://www.iaf.fraunhofer.de/en/offers/semiconductor-lasers.html (Semiconductor Lasers)

Laura Hau | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

More articles from Physics and Astronomy:

nachricht Ice on the spin liquid
11.06.2018 | Universität Augsburg

nachricht How solar prominences vibrate
08.06.2018 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

Antioxidants developed by MSU scientists slow down senescence in plants

11.06.2018 | Life Sciences

Scientists find ordered magnetic patterns in disordered magnetic material

11.06.2018 | Materials Sciences

The cartography of the nucleus

11.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>