Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Droplets Levitate on a Cushion of Blue Light

13.08.2015

Applying more than 50 volts across a droplet of weak hydrochloric acid causes the drop to rise into the air above a glowing plasma layer

Researchers in France have discovered a new way to levitate liquid droplets, which surprisingly also creates a mini light show, with the droplet sparking as it floats above a faint blue glowing gap.


Cedric Poulain, et al / CEA

A blue glow emanates from beneath a levitating droplet of weak hydrochloric acid. The glow comes from a plasma created when researchers applied above 50 volts of electricity across the droplet.

Described this week in the journal Applied Physics Letters, from AIP Publishing, the work may offer an inexpensive new way to generate a freely movable microplasma, as well as yield insights into fundamental physics questions.

The floating effect is similar to Leidenfrost levitation -- in which droplets dance on a hot vapor cushion. But by creating the vapor with a strong jolt of electricity instead of heat, the researchers found they could ionize the gas into a plasma that glowed a soft blue light.

"This method is probably an easy and original way to make a plasma," said Cedric Poulain, a physicist at the French Alternative Energies and Atomic Energy Commission. Poulain speculates that the deformability of a liquid drop would let the researchers rig up a device to move the plasma along a surface, but he admits that such applications were far from his and his colleagues' minds when they first conceived the experiment.

At first, the researchers wanted to explore the limits of the analogy between the boiling phenomenon and water electrolysis, which is the breakup of water into hydrogen and oxygen gases by an electric current.

As an example of boiling behavior, Poulain described the case of a liquid droplet at the surface of a hot pan. If the pan temperature is just above 100 degrees Celsius, the drop spreads and water vapor bubbles grow at the pan surface. However, if the pan is very hot (more than 280 degrees Celsius), a cushion of vapor is formed between the drop and the pan, levitating the drop and preventing contact between the liquid water and the pan, a phenomenon called the Leidenfrost effect. "This is a classical ‘grandmother’ trick to test the temperature of a pan," Poulain said.

The team wondered if a similar transition exists in the case of water electrolysis. The analogy interested the authors, because they study an event called "boiling crisis" in nuclear power plant steam generators. If the core of a nuclear reactor gets too hot, bubbles in the cooling water can suddenly coalesce to form a vapor film that limits further heat transfer and leads to a dangerous increase in temperature.

A Cushion of Vapor from a Jolt of Electricity

In their lab, Poulain and his colleagues devised a set-up to run electricity through conductive droplets and film the droplets' behavior at high speed. They suspended a small drop of weak hydrochloric acid, which conducts electricity, above a metal plate and applied a voltage across the drop. When the drop touched the plate, electricity began to flow, and the water in the hydrochloric acid solution started to break down into hydrogen and oxygen gas.

Above 50 volts, the bottom of the droplet started sparking. It levitated, rising over the surface of the plate, and a faint blue glow emanated from the gap.

At first the researchers believed that the drop might be resting on a cushion of hydrogen gas from the breakup of water, but further analysis revealed that the gaseous cushion was in fact mostly water vaporized by energy from the electric current.

The blue light emission was unexpected and probably the most exciting feature of the experiment, the team said. Although fifty volts is a relatively low voltage, Poulain explained that the tiny gap between the droplet and the metal plate is what gives rise to the very high electric field necessary to generate a long-term and dense plasma with little energy.

Exploring the Blue Light

The researchers next plan to analyze the composition of the plasma layer. They say it appears to be a superposition of two types of plasma that is not well understood. They will also study the fast dynamics at the bottom of the drop just as the sparks begin to fly, which should yield additional insights into the plasma.

Although plasma dynamics may seem far removed from the problem of film boiling in nuclear reactors, Poulain is happy about the path the curiosity-driven research has taken the team.

"It's very exciting," he said of the team's foray into plasma levitation.

###

The article, "The plasma levitation of droplets," is authored by Cedric Poulain, Antoine Dugue, Antoine Durieux, Nader Sadeghi, and Jerome Duplat. It will be published in the journal Applied Physics Letters on August 11, 2015 (DOI: 10.1063/1.4926964). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/107/6/10.1063/1.4926964

The authors of this paper are affiliated with the French Alternative Energies and Atomic Energy Commission (CEA), Ecole Polytechnique, and the University of Grenoble Alpes.

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org  

Contact Information
Jason Socrates Bardi
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Physics and Astronomy:

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>