Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Droplets Levitate on a Cushion of Blue Light

13.08.2015

Applying more than 50 volts across a droplet of weak hydrochloric acid causes the drop to rise into the air above a glowing plasma layer

Researchers in France have discovered a new way to levitate liquid droplets, which surprisingly also creates a mini light show, with the droplet sparking as it floats above a faint blue glowing gap.


Cedric Poulain, et al / CEA

A blue glow emanates from beneath a levitating droplet of weak hydrochloric acid. The glow comes from a plasma created when researchers applied above 50 volts of electricity across the droplet.

Described this week in the journal Applied Physics Letters, from AIP Publishing, the work may offer an inexpensive new way to generate a freely movable microplasma, as well as yield insights into fundamental physics questions.

The floating effect is similar to Leidenfrost levitation -- in which droplets dance on a hot vapor cushion. But by creating the vapor with a strong jolt of electricity instead of heat, the researchers found they could ionize the gas into a plasma that glowed a soft blue light.

"This method is probably an easy and original way to make a plasma," said Cedric Poulain, a physicist at the French Alternative Energies and Atomic Energy Commission. Poulain speculates that the deformability of a liquid drop would let the researchers rig up a device to move the plasma along a surface, but he admits that such applications were far from his and his colleagues' minds when they first conceived the experiment.

At first, the researchers wanted to explore the limits of the analogy between the boiling phenomenon and water electrolysis, which is the breakup of water into hydrogen and oxygen gases by an electric current.

As an example of boiling behavior, Poulain described the case of a liquid droplet at the surface of a hot pan. If the pan temperature is just above 100 degrees Celsius, the drop spreads and water vapor bubbles grow at the pan surface. However, if the pan is very hot (more than 280 degrees Celsius), a cushion of vapor is formed between the drop and the pan, levitating the drop and preventing contact between the liquid water and the pan, a phenomenon called the Leidenfrost effect. "This is a classical ‘grandmother’ trick to test the temperature of a pan," Poulain said.

The team wondered if a similar transition exists in the case of water electrolysis. The analogy interested the authors, because they study an event called "boiling crisis" in nuclear power plant steam generators. If the core of a nuclear reactor gets too hot, bubbles in the cooling water can suddenly coalesce to form a vapor film that limits further heat transfer and leads to a dangerous increase in temperature.

A Cushion of Vapor from a Jolt of Electricity

In their lab, Poulain and his colleagues devised a set-up to run electricity through conductive droplets and film the droplets' behavior at high speed. They suspended a small drop of weak hydrochloric acid, which conducts electricity, above a metal plate and applied a voltage across the drop. When the drop touched the plate, electricity began to flow, and the water in the hydrochloric acid solution started to break down into hydrogen and oxygen gas.

Above 50 volts, the bottom of the droplet started sparking. It levitated, rising over the surface of the plate, and a faint blue glow emanated from the gap.

At first the researchers believed that the drop might be resting on a cushion of hydrogen gas from the breakup of water, but further analysis revealed that the gaseous cushion was in fact mostly water vaporized by energy from the electric current.

The blue light emission was unexpected and probably the most exciting feature of the experiment, the team said. Although fifty volts is a relatively low voltage, Poulain explained that the tiny gap between the droplet and the metal plate is what gives rise to the very high electric field necessary to generate a long-term and dense plasma with little energy.

Exploring the Blue Light

The researchers next plan to analyze the composition of the plasma layer. They say it appears to be a superposition of two types of plasma that is not well understood. They will also study the fast dynamics at the bottom of the drop just as the sparks begin to fly, which should yield additional insights into the plasma.

Although plasma dynamics may seem far removed from the problem of film boiling in nuclear reactors, Poulain is happy about the path the curiosity-driven research has taken the team.

"It's very exciting," he said of the team's foray into plasma levitation.

###

The article, "The plasma levitation of droplets," is authored by Cedric Poulain, Antoine Dugue, Antoine Durieux, Nader Sadeghi, and Jerome Duplat. It will be published in the journal Applied Physics Letters on August 11, 2015 (DOI: 10.1063/1.4926964). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/107/6/10.1063/1.4926964

The authors of this paper are affiliated with the French Alternative Energies and Atomic Energy Commission (CEA), Ecole Polytechnique, and the University of Grenoble Alpes.

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org  

Contact Information
Jason Socrates Bardi
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Physics and Astronomy:

nachricht A quantum walk of photons
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>