Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Donuts, math, and superdense teleportation of quantum information


Putting a hole in the center of the donut--a mid-nineteenth-century invention--allows the deep-fried pastry to cook evenly, inside and out. As it turns out, the hole in the center of the donut also holds answers for a type of more efficient and reliable quantum information teleportation, a critical goal for quantum information science.

Quantum teleportation is a method of communicating information from one location to another without moving the physical matter to which the information is attached. Instead, the sender (Alice) and the receiver (Bob) share a pair of entangled elementary particles--in this experiment, photons, the smallest units of light--that transmit information through their shared quantum state.

In superdense teleportation of quantum information, Alice (near) selects a particular set of states to send to Bob (far), using the hyperentangled pair of photons they share. The possible states Alice may send are represented as the points on a donut shape, here artistically depicted in sharp relief from the cloudy silhouette of general quantum state that surrounds them. To transmit a state, Alice makes a measurement on her half of the entangled state, which has four possible outcomes shown by red, green, blue, and yellow points. She then communicates the outcome of her measurement (in this case, yellow, represented by the orange streak connecting the two donuts) to Bob using a classical information channel. Bob then can make a corrective rotation on his state to recover the state that Alice sent.

Image by Precision Graphics, copyright Paul Kwiat, University of Illinois at Urbana-Champaign

In simplified terms, Alice encodes information in the form of the quantum state of her photon. She then sends a key to Bob over traditional communication channels, indicating what operation he must perform on his photon to prepare the same quantum state, thus teleporting the information.

Quantum teleportation has been achieved by a number of research teams around the globe since it was first theorized in 1993, but current experimental methods require extensive resources and/or only work successfully a fraction of the time.

Now, by taking advantage of the mathematical properties intrinsic to the shape of a donut--or torus, in mathematical terminology--a research team led by physicist Paul Kwiat of the University of Illinois at Urbana-Champaign has made great strides by realizing "superdense teleportation".

This new protocol, developed by physicist and paper co-author Herbert Bernstein of Hampshire College in Amherst, MA, effectively reduces the resources and effort required to teleport quantum information, while at the same time improving the reliability of the information transfer.

With this new protocol, the researchers have experimentally achieved 88 percent transmission fidelity, twice the classical upper limit of 44 percent. The protocol uses pairs of photons that are "hyperentangled"--simultaneously entangled in more than one state variable, in this case in polarization and in orbital angular momentum--with a restricted number of possible states in each variable. In this way, each photon can carry more information than in earlier quantum teleportation experiments.

At the same time, this method makes Alice's measurements and Bob's transformations far more efficient than their corresponding operations in quantum teleportation: the number of possible operations being sent to Bob as the key has been reduced, hence the term "superdense."

Kwiat explains, "In classical computing, a unit of information, called a bit, can have only one of two possible values--it's either a zero or a one. A quantum bit, or qubit, can simultaneously hold many values, arbitrary superpositions of 0 and 1 at the same time, which makes faster, more powerful computing systems possible.

"So a qubit could be represented as a point on a sphere, and to specify what state it is, one would need longitude and latitude. That's a lot of information compared to just a 0 or a 1."

"What makes our new scheme work is a restrictive set of states. The analog would be, instead of using a sphere, we are going to use a torus, or donut shape. A sphere can only rotate on an axis, and there is no way to get an opposite point for every point on a sphere by rotating it--because the axis points, the north and the south, don't move. With a donut, if you rotate it 180 degrees, every point becomes its opposite. Instead of axis points you have a donut hole. Another advantage, the donut shape actually has more surface area than the sphere, mathematically speaking--this means it has more distinct points that can be used as encoded information."

Lead author, Illinois physics doctoral candidate Trent Graham, comments, "We are constrained to sending a certain class of quantum states called 'equimodular' states. We can deterministically perform operations on this constrained set of states, which are impossible to perfectly perform with completely general quantum states. Deterministic describes a definite outcome, as opposed to one that is probabilistic. With existing technologies, previous photonic quantum teleportation schemes either cannot work every time or require extensive experimental resources. Our new scheme could work every time with simple measurements."

This research team is part of a broader collaboration that is working toward realizing quantum communication from a space platform, such as the International Space Station, to an optical telescope on Earth. The collaboration--Kwiat, Graham, Bernstein, physicist Jungsang Kim of Duke University in Durham, NC, and scientist Hamid Javadi of NASA's Jet Propulsion Laboratory in Pasadena, CA--recently received funding from NASA Headquarter's Space Communication and Navigation program (with project directors Badri Younes and Barry Geldzahler) to explore the possibility.

"It would be a stepping stone toward building a quantum communications network, a system of nodes on Earth and in space that would enable communication from any node to any other node," Kwiat explains. "For this, we're experimenting with different quantum state properties that would be less susceptible to air turbulence disruptions."


The team's recent experimental findings are published in the May 28, 2015 issue of Nature Communications, and represent the collaborative effort Kwiat, Graham, and Bernstein, as well as physicist Tzu-Chieh Wei of State University of New York at Stony Brook, and mathematician Marius Junge of the University of Illinois.

Siv Schwink | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>



Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

More VideoLinks >>>