Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Donuts, math, and superdense teleportation of quantum information


Putting a hole in the center of the donut--a mid-nineteenth-century invention--allows the deep-fried pastry to cook evenly, inside and out. As it turns out, the hole in the center of the donut also holds answers for a type of more efficient and reliable quantum information teleportation, a critical goal for quantum information science.

Quantum teleportation is a method of communicating information from one location to another without moving the physical matter to which the information is attached. Instead, the sender (Alice) and the receiver (Bob) share a pair of entangled elementary particles--in this experiment, photons, the smallest units of light--that transmit information through their shared quantum state.

In superdense teleportation of quantum information, Alice (near) selects a particular set of states to send to Bob (far), using the hyperentangled pair of photons they share. The possible states Alice may send are represented as the points on a donut shape, here artistically depicted in sharp relief from the cloudy silhouette of general quantum state that surrounds them. To transmit a state, Alice makes a measurement on her half of the entangled state, which has four possible outcomes shown by red, green, blue, and yellow points. She then communicates the outcome of her measurement (in this case, yellow, represented by the orange streak connecting the two donuts) to Bob using a classical information channel. Bob then can make a corrective rotation on his state to recover the state that Alice sent.

Image by Precision Graphics, copyright Paul Kwiat, University of Illinois at Urbana-Champaign

In simplified terms, Alice encodes information in the form of the quantum state of her photon. She then sends a key to Bob over traditional communication channels, indicating what operation he must perform on his photon to prepare the same quantum state, thus teleporting the information.

Quantum teleportation has been achieved by a number of research teams around the globe since it was first theorized in 1993, but current experimental methods require extensive resources and/or only work successfully a fraction of the time.

Now, by taking advantage of the mathematical properties intrinsic to the shape of a donut--or torus, in mathematical terminology--a research team led by physicist Paul Kwiat of the University of Illinois at Urbana-Champaign has made great strides by realizing "superdense teleportation".

This new protocol, developed by physicist and paper co-author Herbert Bernstein of Hampshire College in Amherst, MA, effectively reduces the resources and effort required to teleport quantum information, while at the same time improving the reliability of the information transfer.

With this new protocol, the researchers have experimentally achieved 88 percent transmission fidelity, twice the classical upper limit of 44 percent. The protocol uses pairs of photons that are "hyperentangled"--simultaneously entangled in more than one state variable, in this case in polarization and in orbital angular momentum--with a restricted number of possible states in each variable. In this way, each photon can carry more information than in earlier quantum teleportation experiments.

At the same time, this method makes Alice's measurements and Bob's transformations far more efficient than their corresponding operations in quantum teleportation: the number of possible operations being sent to Bob as the key has been reduced, hence the term "superdense."

Kwiat explains, "In classical computing, a unit of information, called a bit, can have only one of two possible values--it's either a zero or a one. A quantum bit, or qubit, can simultaneously hold many values, arbitrary superpositions of 0 and 1 at the same time, which makes faster, more powerful computing systems possible.

"So a qubit could be represented as a point on a sphere, and to specify what state it is, one would need longitude and latitude. That's a lot of information compared to just a 0 or a 1."

"What makes our new scheme work is a restrictive set of states. The analog would be, instead of using a sphere, we are going to use a torus, or donut shape. A sphere can only rotate on an axis, and there is no way to get an opposite point for every point on a sphere by rotating it--because the axis points, the north and the south, don't move. With a donut, if you rotate it 180 degrees, every point becomes its opposite. Instead of axis points you have a donut hole. Another advantage, the donut shape actually has more surface area than the sphere, mathematically speaking--this means it has more distinct points that can be used as encoded information."

Lead author, Illinois physics doctoral candidate Trent Graham, comments, "We are constrained to sending a certain class of quantum states called 'equimodular' states. We can deterministically perform operations on this constrained set of states, which are impossible to perfectly perform with completely general quantum states. Deterministic describes a definite outcome, as opposed to one that is probabilistic. With existing technologies, previous photonic quantum teleportation schemes either cannot work every time or require extensive experimental resources. Our new scheme could work every time with simple measurements."

This research team is part of a broader collaboration that is working toward realizing quantum communication from a space platform, such as the International Space Station, to an optical telescope on Earth. The collaboration--Kwiat, Graham, Bernstein, physicist Jungsang Kim of Duke University in Durham, NC, and scientist Hamid Javadi of NASA's Jet Propulsion Laboratory in Pasadena, CA--recently received funding from NASA Headquarter's Space Communication and Navigation program (with project directors Badri Younes and Barry Geldzahler) to explore the possibility.

"It would be a stepping stone toward building a quantum communications network, a system of nodes on Earth and in space that would enable communication from any node to any other node," Kwiat explains. "For this, we're experimenting with different quantum state properties that would be less susceptible to air turbulence disruptions."


The team's recent experimental findings are published in the May 28, 2015 issue of Nature Communications, and represent the collaborative effort Kwiat, Graham, and Bernstein, as well as physicist Tzu-Chieh Wei of State University of New York at Stony Brook, and mathematician Marius Junge of the University of Illinois.

Siv Schwink | EurekAlert!

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>