Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond-based resonators might become highly sensitive detectors

22.06.2016

Physicists from the Technological Institute for Superhard and Novel Carbon Materials, the Moscow Institute of Physics and Technology, and the Siberian Federal University have mathematically modelled diamond-based microstructures for producing compact high sensitivity sensors.

The researchers' study investigates the problem of selecting a useful acoustic signal taking into account the excitation of Lamb waves in promising microwave microresonators with substrates of synthetic diamonds.


This is the typical scheme of PLS with a possible acoustic wave propagation.

Credit: MIPT

The scientists proposed a mathematical model and experimentally studied acoustic waves in the piezoelectric layered structure, described their dispersion and proposed a number of ways of decreasing the effects of spurious peaks.

In the future, diamond crystal based structures may be able to be used as high sensitivity sensors to detect pressure, acceleration, temperature, the thickness of ultrathin films etc. The paper has been published in Applied Physics Letters.

"I think that the results we have obtained from a piezoelectric layered structure based on synthetic diamonds are ahead of world-class research in this field. Our microresonators were used to obtain resonances at record high microwave frequencies in a range of up to 20 GHz, with the quality factor remaining at several thousand.

The behaviour of diamond as a substrate for the acoustic microresonator was very significant and I hope that using diamonds in acoustics and electronics will lead to more exciting discoveries," said the corresponding author of the study, Boris Sorokin, in an interview with MIPT's Communications Office.

The quality factor is a feature of an oscillating system. It describes how quickly oscillations die down in a system; the higher the quality factor, the smaller the energy loss.

A piezoelectric layered structure is a "sandwich" of various different materials with a piezoelectric effect. This term means that under compression or tension an electric field occurs around the material - and when an electrical voltage is applied, the material itself changes shape. Non-scientists will have seen the piezoelectric effect in lighters (pressing the button compresses the piezoelectric, which provides enough voltage for a spark).

However, aside from lighters, the effect is used in microphones, precise micromanipulators, and many kinds of sensors for pressure, humidity, temperature etc. Another very important application of piezoelectrics is in highly stable piezoelectric resonators, which enable quartz clocks to display time accurately, for example, or computers to run programs smoothly.

The effect of an electric field on a piezoelectric, in this case a thin film of aluminium nitride AlN, leads to deformation and causes elastic waves which pass to the substrate in the same way that an elastic wave falling on the piezoelectric film causes an electric field. When it reaches the edge of the substrate, the wave is reflected and within the layers of several materials a number of oscillations occur at the same time - this effect resembles an echo that can be heard when you shout in a tunnel or into a wide tube.

Diamonds and waves

Diamond substrates were not chosen by chance. Piezocrystals are ideal for such devices, as they have a combination of properties such as low acoustic absorption, a high electromechanical coupling coefficient, and a high speed of sound. Diamonds satisfy all these requirements except for one - there is no piezoelectric effect. This is why the devices needed the aluminium nitride film. Engineers are, of course, slightly apprehensive regarding the price, but synthetic diamonds are now becoming more affordable.

The properties of synthetic diamonds are superior to those observed in natural diamonds, particularly in terms of their impurity profile and reproducibility, however large natural gem-quality diamonds are much more expensive. The authors of the study believe that synthetic single crystal diamonds are most promising for developing new acoustoelectric devices.

Voluminous waves excited in the layered structure are able to resonate, creating both the basic type (mode) of oscillations, and also generating additional modes. In the substrate and piezoelectric film, in addition to the useful longitudinal-type oscillations, Lamb waves also occur under certain conditions. The spectrum of these waves is in separate branches with the phase velocity dependent on the frequency.

Lamb waves are a complex combination of elastic oscillations occurring in thin layers of elastic media and were first described by the British physicist Horace Lamb. Interestingly, the particles in these waves follow an elliptical path. There are symmetric and antisymmetric (bending) Lamb waves. Phase velocity is the velocity at which a point moves from a predetermined phase - e.g. the crest of a wave; the phase velocity of waves in a particular medium often depends on their frequency and this effect is called dispersion.

In this case it is geometric dispersion of waves in two-dimensional acoustic waveguides. On the one hand, excitation of Lamb waves is not useful in terms of the quality factor of the acoustic resonator in the main (longitudinal) mode, however these types of waves themselves may be of special interest.

Using mathematical modelling, researchers studied in detail the spectrum of various acoustic modes occurring within the diamond structure, using a visualization of the areas of acoustic displacement. They paid particular attention to resonances that occur as a result of there being a whole spectrum of natural oscillation frequencies in the layered "sandwich". In the simplest case, this frequency corresponds to the frequency at which an elastic system would oscillate in the absence of external influences. If, for example, you touch and release an ordinary pendulum, it will swing with a natural frequency and applying force with this frequency is most effective for its swing. Resonance is when the natural frequency and the excitation frequency coincide - the oscillation amplitude increases sharply.

Natural frequencies depend on the properties of the materials, as well as the geometry of the structure. This means that detectors can be made that are able to detect even individual bacteria that have become attached to their surface - the bacteria slightly increase the mass of the entire system and shift the resonant frequency.

One of the main results was that the researchers succeeded in selecting and identifying different types of waves and forming dispersion laws for them. The results obtained will be useful in the development of microwave acoustoelectronic devices.

Acoustoelectronics is a science combining solid-state physics, semiconductors, and radioelectronics that studies the principles of building devices to detect, convert, and process signals. Acoustic resonators are widely used in science and technology as sensing elements in various physical and chemical sensors and in medical devices. Cavity resonators are popular because of their miniature size and high quality factor, while resonating at high and ultra-high frequencies. The higher the operating frequencies, the smaller the cross-sectional dimensions of resonators are required (~100 microns for a frequency of ~10 GHz).

The acoustic properties of these sensitive elements are developed and studied at MIPT's Department of Physics and Chemistry of Nanostructures, which is based at the Technological Institute for Superhard and Novel Carbon Materials. It was at this institute where scientists from a number of Russian organisations worked together to develop a method of creating a material harder than diamond; it was also the place where the secret of the abnormal stiffness of polycrystalline diamonds was uncovered - it was found that they are more rigid than single crystals.

Media Contact

Sergey Divakov
divakov@phystech.edu
7-925-834-0978

 @phystech

https://mipt.ru/english/ 

Sergey Divakov | EurekAlert!

Further reports about: acoustic diamonds frequencies oscillations piezoelectric waves

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>