Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detour via gravitational lens makes distant galaxy visible

07.11.2016

Never before have astrophysicists measured light of such high energy from a celestial object so far away. Around 7 billion years ago, a huge explosion occurred at the black hole in the center of a galaxy. This was followed by a burst of high-intensity gamma rays. A number of telescopes, MAGIC included, have succeeded in capturing this light. An added bonus: it was thus possible to reconfirm Einstein's General Theory of Relativity, as the light rays encountered a less distant galaxy en route to Earth - and were deflected by this so-called gravitational lens.

The object QSO B0218+357 is a blazar, a specific type of black hole. Researchers now assume that there is a supermassive black hole at the center of every galaxy. Black holes, into which matter is currently plunging are called active black holes. They emit extremely bright jets. If these bursts point towards Earth, the term blazar is used.


The MAGIC telescopes on the canary island of La Palma are shown.

Credit: Robert Wagner

Full moon prevents the first MAGIC observation

The event now described in "Astronomy & Astrophysics" took place 7 billion years ago, when the universe was not even half its present age. "The blazar was discovered initially on 14 July 2014 by the Large Area Telescope (LAT) of the Fermi satellite," explains Razmik Mirzoyan, scientist at the Max Planck Institute for Physics and spokesperson for the MAGIC collaboration. "The gamma ray telescopes on Earth immediately fixed their sights on the blazer in order to learn more about this object."

One of these telescopes was MAGIC, on the Canary Island of La Palma, specialized in high-energy gamma rays. It can capture photons - light particles - whose energy is 100 billion times higher than the photons emitted by our Sun and a thousand times higher than those measured by Fermi-LAT. The MAGIC scientists were initially out of luck, however: A full moon meant the telescope was not able to operate during the time in question.

Gravitational lens deflects ultra-high-energy photons

Eleven days later, MAGIC got a second chance, as the gamma rays emitted by QSO B0218+357 did not take the direct route to Earth: One billion years after setting off on their journey, they reached the galaxy B0218+357G. This is where Einstein's General Theory of Relativity came into play.

This states that a large mass in the universe, a galaxy, for example, deflects light of an object behind it. In addition, the light is focused as if by a gigantic optical lens - to a distant observer, the object appears to be much brighter, but also distorted. The light beams also need different lengths of time to pass through the lens, depending on the angle of observation.

This gravitational lens was the reason that MAGIC was able, after all, to measure QSO B0218+357 - and thus the most distant object in the high-energy gamma ray spectrum. "We knew from observations undertaken by the Fermi space telescope and radio telescopes in 2012 that the photons that took the longer route would arrive 11 days later," says Julian Sitarek (University of ?ódz, Poland), who led this study. "This was the first time we were able to observe that high-energy photons were deflected by a gravitational lens."

Doubling the size of the gamma-ray universe

The fact that gamma rays of such high energy from a distant celestial body reach Earth's atmosphere is anything but obvious. "Many gamma rays are lost when they interact with photons which originate from galaxies or stars and have a lower energy," says Mirzoyan. "With the MAGIC observation, the part of the universe that we can observe via gamma rays has doubled."

The fact that the light arrived on Earth at the time calculated could rattle a few theories on the structure of the vacuum - further investigations, however, are required to confirm this. "The observation currently points to new possibilities for high-energy gamma ray observatories - and provides a pointer for the next generation of telescopes in the CTA project," says Mirzoyan, summing up the situation.

###

Contact:

Dr. Razmik Mirzoyan
Max Planck Institute for Physics
E-mail: razmik.mirzoyan@mpp.mpg.de
Phone: +49 89 32354-328

Media Contact

Barbara Wankerl
barbara.wankerl@mac.com
49-893-235-4292

http://www.mpg.de/151995/physik 

Barbara Wankerl | EurekAlert!

Further reports about: Telescopes black hole gamma rays gravitational lens photons

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>