Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detonating white dwarfs as supernovae

06.10.2016

A new mathematical model created by astrophysicists at the American Museum of Natural History, New York, describes how dead stars called white dwarfs could detonate, producing a type of explosion that is instrumental to measuring the extreme distances in our universe. The mechanism, described in a paper in Monthly Notices of the Royal Astronomical Society, could improve our understanding of how Type Ia supernovae form.

“Type Ia supernovae are extremely important objects in physics, best known for their role in revealing that the expansion of the universe is accelerating,” said paper co-author Saavik Ford, who is a research associate in the Museum’s Department of Astrophysics as well as a professor at the Borough of Manhattan Community College, City University of New York (CUNY); a faculty member at CUNY’s Graduate Center; and a Kavli Scholar at the Kavli Institute for Theoretical Physics. “The problem is that people do not agree on exactly how Type Ia supernovae come to be.”


Hubble Space Telescope image of the type Ia supernova 1994D (lower left) in galaxy NGC 4526. Credit: NASA/ESA, the Hubble Key Project Team and the High-Z Supernova Search Team

Current research indicates that Type Ia supernova explosions originate from binary star systems—two stars orbiting one another—in which at least one star is a white dwarf, the dense remains of a star that was a few times more massive than our Sun. For this study, the scientists investigated how two white dwarfs might form a supernova.

“The simplest way to create a Type Ia supernova is to run two white dwarfs into one another,” Ford said. “In our local universe, there are very few white dwarf binaries that are close enough to collide. Yet we see lots of supernovae lighting up our universe, so we know that something else is probably going on to cause those explosions.”

Ford and co-author Barry McKernan, who is also a research associate in the Museum’s Department of Astrophysics, a professor at the Borough of Manhattan Community College, CUNY, a faculty member at CUNY’s Graduate Center, and a Kavli Scholar at the Kavli Institute for Theoretical Physics, propose the following: White dwarfs are roughly Earth-sized balls of dense, compressed, degenerate matter that wobble, or oscillate.

When two white dwarfs orbit each other they tug on one another, emitting gravitational radiation that takes away energy from their orbit. This causes them to get closer and closer together. During this process, known as inspiraling, the binary orbit of the stars gets smaller, the frequency of the tugging gets stronger and, at certain “sweet spots,” it matches an oscillation frequency in at least one of the white dwarfs. When this happens, a phenomenon called resonance is produced, which can be visualised by a child being pushed in a playground swing.

“Pushing your kid in time with the natural interval, or frequency, of the swing ramps up the energy and gets them higher and higher,” McKernan said. “There’s a similar effect in our model, where a lock on the frequency produces a series of rapid jumps in energy that are deposited into the white dwarfs.”
As a result, if enough energy is deposited in the resonating white dwarf, it could explode before it touches the other one. If the white dwarf does not explode, the resonance causes the orbit to shrink faster than predicted by gravitational wave emission alone, so the stars will crash into each other faster than would normally be expected.

“Basically, we’ve proposed that if you have two white dwarfs spiralling towards each other and you shake one of them the right way for long enough, one will either blow up or you’ll bring the objects closer together faster for an eventual detonation,” McKernan said.

Ford and McKernan plan to test their model by combing through data produced by up-and-coming gravitational wave detectors like eLISA, a space-based observatory expected to launch in 2029.
“If we’re right, eLISA may be able to see glitches in the gravitational waveforms coming from some of the nearest white dwarf binaries,” McKernan said. “That would be amazing to see.”

Further information

Funding for this study was provided by the National Science Foundation grant #s PAARE AST-1153335 and PHY11-25915.

The new work appears in “On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral”, B. McKernan and K. E. S. Ford, vol. 463 (2), pp. 2039-2045, Monthly Notices of the Royal Astronomical Society, Oxford University Press. A copy of the paper is available from http://mnras.oxfordjournals.org/content/463/2/2039

http://www.ras.org.uk

  • Full bibliographic informationThe new work appears in “On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral”, B. McKernan and K. E. S. Ford, vol. 463 (2), pp. 2039-2045, Monthly Notices of the Royal Astronomical Society, Oxford University Press. A copy of the paper is available from http://mnras.oxfordjournals.org/content/463/2/2039

For further information, please contact:

Robert Massey

+44 (0)20 7734 3307

rm@ras.org.uk

Robert Massey | AlphaGalileo

Further reports about: Type Ia supernovae astrophysics supernovae white dwarf

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>