Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing a better superconductor with geometric frustration

12.06.2018

Superconductors contain tiny tornadoes of supercurrent, called vortex filaments, that create resistance when they move. This affects the way superconductors carry a current.

But a magnet-controlled "switch" in superconductor configuration provides unprecedented flexibility in managing the location of vortex filaments, altering the properties of the superconductor, according to a new paper in Nature Nanotechnology.


This is the system setup.

Credit: Xiaoyu Ma and Yong-Lei Wang, courtesy of the University of Notre Dame.

"We work on superconductors and how to make them better for applications," said Boldizsár Jankó professor in the Department of Physics at the University of Notre Dame and co-corresponding author on the paper. "One of the major problems in superconductor technology is that most of them have these filaments, these tiny tornadoes of supercurrent. When these move, then you have resistance."

Researchers have been trying to design new devices and new technologies to "pin," or fasten, these filaments to a specified position. Previous efforts to pin the filaments, such as irradiating or drilling holes in the superconductor, resulted in static, unchangeable arrays, or ordered arrangements of filaments.

A new, dynamic system discovered by Jankó and collaborators will enable ongoing adjustments, altering the material's properties over time. The results of the research were published June 11 in Nature Nanotechnology in a paper titled "Switchable geometric frustration in an artificial-spin-ice/superconductor hetero-system."

The collaborators' solution overlays the superconductor with an artificial spin ice consisting of an array of interacting nanoscale bar magnets. Rearranging the magnetic orientations of those nano-bar magnets results in a real-time rearrangement of the pinning on the superconducting site. This makes possible multiple, reversible spin cycle configurations for the vortices. Spin is a particle's natural, angular momentum.

"The main discovery here is our ability to reconfigure these spinning sites reversibly and instead of having just one spin cycle configuration for the vortices, we now have many, and we can switch them back and forth," Jankó said. The magnetic charges have the same pinning effect as drilled holes in other systems but are not limited to a static configuration, he described. For example, the magnets could be arranged to create more or less resistance in the superconductor. The elementary unit potentially could be combined into a circuit capable of logic manipulation.

Yong-Lei Wang, research assistant professor in the Department of Physics and co-first/co-corresponding author on the paper, who is also affiliated with Argonne National Laboratory and Nanjing University, had previously described an artificial spin structure, or magnetic charge ice, which could be tuned to various relatively stable configurations. The structures are called ice because they involve patterned atomic deformations similar to that of oxygen bonds when water freezes. In the current study, Jankó proposed applying the system to superconductors.

"We demonstrated that unconventional artificial-spin-ice geometries can mimic the charge distribution of an artificial square spin ice system, allowing unprecedented control over the charge locations via local and external magnetic fields," Wang said. "We show now that such a control over magnetic charges can be exploited in the control of quantum fluxes in a spin-ice/superconductor heterostructure." He added that the success resulted from close collaboration between experimentalists and theorists.

Because the control of the quantum fluxes is difficult to visualize in an experiment, simulations were required to successfully reproduce the results, said Xiaoyu Ma, a doctoral student in the Department of Physics who conducted the computer simulation in the study and is the co-first author on the paper. The simulations allowed researchers to see the detailed processes involved. "The number of vortex configurations that we can realize is huge, and we can design and locally reconfigure them site by site," Ma said. "This has never been realized before."

The research is expected to provide a new setting at the nanoscale for the design and manipulation of geometric order and frustration -- an important phenomenon in magnetism related to the arrangement of spins -- in a wide range of material systems, Wang noted. These include magnetic skyrmions, two-dimensional materials, topological insulators/semimetals and colloids in soft materials.

"This could lead to novel functionalities," Wang said. "We believe this work will open a new direction in application of geometrical frustrated material systems."

###

In addition to Jankó, Wang and Ma, other authors on the paper include Jing Xu, Zhi-Li Xiao, Alexy Snezhko, Ralu Divan, Leonidas E. Ocala, John E. Pearson and Wai-Kwong Kwok of Argonne National Laboratory.

This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

Media Contact

Jessica Sieff
jsieff@nd.edu
574-631-3933

 @ND_news

http://www.nd.edu 

Jessica Sieff | EurekAlert!
Further information:
https://news.nd.edu/news/designing-a-better-superconductor-with-geometric-frustration/

More articles from Physics and Astronomy:

nachricht Evidence for a new property of quantum matter revealed
12.06.2018 | Johns Hopkins University

nachricht Ice on the spin liquid
11.06.2018 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

AI senses people's pose through walls

12.06.2018 | Information Technology

Making the oxygen we breathe, a photosynthesis mechanism exposed

12.06.2018 | Life Sciences

Why Zika is not an STD - Semen inhibits Zika virus infection

12.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>