Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Insight Into Interfaces

16.09.2016

Interfaces between different materials and their properties are of key importance for modern technology. Together with an international team, physicists of Würzburg University have developed a new method, which allows them to have an extremely precise glance at these interfaces and to model their properties.

In his Nobel Lecture on December 8, 2000, Herbert Kroemer coined the saying “the interface is the device”. Kroemer referred to the mature field of semiconductor heterostructures, which form the basis of all modern electronics.


Film of lanthanum cobalt oxide shows a sequence of positively and negatively charged atomic layers. Without electronic reconstruction an enormous electrostatic field would form between the layers

Graphic: J.E. Hamann-Borrero & Vladimir Hinkov

However, now, in the advent of novel, powerful devices based on the more complex and versatile topological and correlated materials, the statement is timelier than ever. Such materials are at the focus of research in the Department of Physics and Astronomy at Würzburg University: Currently, 16 groups are working in this field, and a Collaborative Research Center (CRC 1170) was established in 2015, which is funded by the German Science Foundation (DFG) with nearly 10 Million euro.

Publication in Nature Quantum Materials

In the recent years physicists from Würzburg University and coworkers from Germany, Canada, the U.S.A. and Korea developed a new method to uncover important charge properties of correlated oxide interfaces with unprecedented atomic scale resolution. The team of Professor Vladimir Hinkov and his coworkers report about this experimental method in the current issue of the Nature Journal “NPJ Quantum Materials”.

“Conventional electronic chips are based on networks of so-called p-n junctions, interfaces between semiconductors carrying positive and negative charges, respectively,” says Vladimir Hinkov, describing the background of this research. There are several drawbacks to such a setup: First, the junctions are thick, often of the order of hundreds of interatomic spacings. Second, operating the network requires the movement of many electrons, which costs a lot of energy due to electrical resistance. Third, semiconductors do not intrinsically have magnetic properties and their electron configuration is very basic. “This dramatically limits the ways to build functional junctions and to realize magnetic applications,” Hinkov reports.

Versatile properties require sophisticated methods

Transition-metal oxides, on the other hand, exhibit many different properties: Some of them are ferromagnetic, others are antiferromagnetic, and others in turn are high-temperature superconductors with very unconventional properties. Forming interfaces between such materials yields a plethora of phenomena, which hold promise for novel applications such as different sensors, lossless computer memory and ultrafast processors. The price one has to pay is that more sophisticated tools are necessary to study them: This is due to the variety of phenomena and due to the much shorter length scale, over which the properties of oxides change at such heterointerfaces, which is often just a few atomic spacings.

Of crucial importance is the behavior of electrons at the interface: Do they tend to accumulate? Which orbitals do they occupy, i.e. how do the electron clouds arrange around the atoms? Is there magnetic order, i.e. do the tiny magnetic moments of the electrons called spins align relative to each other, establishing magnetic order? Physicists around the world are seeking for answers to these questions.

Measurements on an atomic scale

Hinkov and coworkers developed a new method and analysis software, and it provides answers. It is based on “resonant x-ray reflectometry”, a technique exploiting x-ray light created at a synchrotron, with the atomic-scale resolution of less than one nanometer. The physicists apply the technique on thin films of lanthanum cobalt oxide, a material that has interesting magnetic properties.

In their present work, however, the scientists have concentrated on another aspect: "Before we can delve in the rich magnetic phenomena of this material, we first have to solve a fundamental, very wide spread problem," says Professor Hinkov. "Like many other materials, such as simple table salt and many semiconductors, lanthanum cobalt oxide consists of charged particles. These so-called ions form a sequence of positively and negatively charged atomic layers, stacked to a 15 nanometer thin film. “One can show that enormous electrostatic fields form between the layers, which is a problem, since they cost a lot of energy,” as Vladimir Hinkov explains.

“Nature is economical and avoids these field energy costs: It brings positive and negative charges to the opposite faces of the film, respectively, just like between the plates of a capacitor. A new field is formed, which is opposite to the original one and which cancels it."

Corrugated interfaces constitute a problem

This accumulation of pure electronic charge at the film faces is called “electronic reconstruction”. According to the physicists, this is a very elegant solution, since it preserves the film face smoothness. For materials, in which electronic reconstruction is not possible, the compensating charge is provided by comparatively large ions, which results in corrugated film faces. As Hinkov explains, such corrugations are detrimental for devices based on film interfaces, especially when, like in transition-metal oxides, the material properties change on an atomic scale at the interface.

Exploiting the new method, the present work shows microscopic evidence that electronic reconstruction is indeed realized at transition-metal oxide interfaces. The method also provides a possibility to study the microscopic properties of such interfaces, which are not limited to electronic reconstruction, but encompass the arrangement of chemical elements, the electronic occupation of atomic orbitals and the spin orientation.

Successful by close, international collaboration

The special “Würzburg environment” and the close international collaboration enabled this successful work. "Such a scientific endeavor is only possible when experts from many different fields work closely together," says Professor Hinkov. One needs excellent samples, high-precision x-ray scattering instruments, which are operated at modern synchrotron light sources, a dedicated software, and last but not least “colleagues who are willing to spend day and night at the synchrotron to perform the measurements."

Valence-state reflectometry of complex oxide heterointerfaces. Jorge E Hamann-Borrero, Sebastian Macke, Woo Seok Choi, Ronny Sutarto, Feizhou He, Abdullah Radi, Ilya Elfimov, Robert J Green, Maurits W Haverkort, Volodymyr B Zabolotnyy, Ho Nyung Lee, George A Sawatzky & Vladimir Hinkov. doi:10.1038/npjquantmats.2016.13

Contact

Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV , T: (0931) 31-84481, hinkov@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>