Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deep Insight Into Interfaces


Interfaces between different materials and their properties are of key importance for modern technology. Together with an international team, physicists of Würzburg University have developed a new method, which allows them to have an extremely precise glance at these interfaces and to model their properties.

In his Nobel Lecture on December 8, 2000, Herbert Kroemer coined the saying “the interface is the device”. Kroemer referred to the mature field of semiconductor heterostructures, which form the basis of all modern electronics.

Film of lanthanum cobalt oxide shows a sequence of positively and negatively charged atomic layers. Without electronic reconstruction an enormous electrostatic field would form between the layers

Graphic: J.E. Hamann-Borrero & Vladimir Hinkov

However, now, in the advent of novel, powerful devices based on the more complex and versatile topological and correlated materials, the statement is timelier than ever. Such materials are at the focus of research in the Department of Physics and Astronomy at Würzburg University: Currently, 16 groups are working in this field, and a Collaborative Research Center (CRC 1170) was established in 2015, which is funded by the German Science Foundation (DFG) with nearly 10 Million euro.

Publication in Nature Quantum Materials

In the recent years physicists from Würzburg University and coworkers from Germany, Canada, the U.S.A. and Korea developed a new method to uncover important charge properties of correlated oxide interfaces with unprecedented atomic scale resolution. The team of Professor Vladimir Hinkov and his coworkers report about this experimental method in the current issue of the Nature Journal “NPJ Quantum Materials”.

“Conventional electronic chips are based on networks of so-called p-n junctions, interfaces between semiconductors carrying positive and negative charges, respectively,” says Vladimir Hinkov, describing the background of this research. There are several drawbacks to such a setup: First, the junctions are thick, often of the order of hundreds of interatomic spacings. Second, operating the network requires the movement of many electrons, which costs a lot of energy due to electrical resistance. Third, semiconductors do not intrinsically have magnetic properties and their electron configuration is very basic. “This dramatically limits the ways to build functional junctions and to realize magnetic applications,” Hinkov reports.

Versatile properties require sophisticated methods

Transition-metal oxides, on the other hand, exhibit many different properties: Some of them are ferromagnetic, others are antiferromagnetic, and others in turn are high-temperature superconductors with very unconventional properties. Forming interfaces between such materials yields a plethora of phenomena, which hold promise for novel applications such as different sensors, lossless computer memory and ultrafast processors. The price one has to pay is that more sophisticated tools are necessary to study them: This is due to the variety of phenomena and due to the much shorter length scale, over which the properties of oxides change at such heterointerfaces, which is often just a few atomic spacings.

Of crucial importance is the behavior of electrons at the interface: Do they tend to accumulate? Which orbitals do they occupy, i.e. how do the electron clouds arrange around the atoms? Is there magnetic order, i.e. do the tiny magnetic moments of the electrons called spins align relative to each other, establishing magnetic order? Physicists around the world are seeking for answers to these questions.

Measurements on an atomic scale

Hinkov and coworkers developed a new method and analysis software, and it provides answers. It is based on “resonant x-ray reflectometry”, a technique exploiting x-ray light created at a synchrotron, with the atomic-scale resolution of less than one nanometer. The physicists apply the technique on thin films of lanthanum cobalt oxide, a material that has interesting magnetic properties.

In their present work, however, the scientists have concentrated on another aspect: "Before we can delve in the rich magnetic phenomena of this material, we first have to solve a fundamental, very wide spread problem," says Professor Hinkov. "Like many other materials, such as simple table salt and many semiconductors, lanthanum cobalt oxide consists of charged particles. These so-called ions form a sequence of positively and negatively charged atomic layers, stacked to a 15 nanometer thin film. “One can show that enormous electrostatic fields form between the layers, which is a problem, since they cost a lot of energy,” as Vladimir Hinkov explains.

“Nature is economical and avoids these field energy costs: It brings positive and negative charges to the opposite faces of the film, respectively, just like between the plates of a capacitor. A new field is formed, which is opposite to the original one and which cancels it."

Corrugated interfaces constitute a problem

This accumulation of pure electronic charge at the film faces is called “electronic reconstruction”. According to the physicists, this is a very elegant solution, since it preserves the film face smoothness. For materials, in which electronic reconstruction is not possible, the compensating charge is provided by comparatively large ions, which results in corrugated film faces. As Hinkov explains, such corrugations are detrimental for devices based on film interfaces, especially when, like in transition-metal oxides, the material properties change on an atomic scale at the interface.

Exploiting the new method, the present work shows microscopic evidence that electronic reconstruction is indeed realized at transition-metal oxide interfaces. The method also provides a possibility to study the microscopic properties of such interfaces, which are not limited to electronic reconstruction, but encompass the arrangement of chemical elements, the electronic occupation of atomic orbitals and the spin orientation.

Successful by close, international collaboration

The special “Würzburg environment” and the close international collaboration enabled this successful work. "Such a scientific endeavor is only possible when experts from many different fields work closely together," says Professor Hinkov. One needs excellent samples, high-precision x-ray scattering instruments, which are operated at modern synchrotron light sources, a dedicated software, and last but not least “colleagues who are willing to spend day and night at the synchrotron to perform the measurements."

Valence-state reflectometry of complex oxide heterointerfaces. Jorge E Hamann-Borrero, Sebastian Macke, Woo Seok Choi, Ronny Sutarto, Feizhou He, Abdullah Radi, Ilya Elfimov, Robert J Green, Maurits W Haverkort, Volodymyr B Zabolotnyy, Ho Nyung Lee, George A Sawatzky & Vladimir Hinkov. doi:10.1038/npjquantmats.2016.13


Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV , T: (0931) 31-84481,

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

More VideoLinks >>>