Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deceleration of runaway electrons paves the way for fusion power

21.06.2017

Two young plasma physicists at Chalmers University of Technology have now taken us one step closer to a functional fusion reactor

Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions. However, imitating the solar energy process is a difficult task to achieve. Two young plasma physicists at Chalmers University of Technology have now taken us one step closer to a functional fusion reactor. Their model could lead to better methods for decelerating the runaway electrons, which could destroy a future reactor without warning.


Although the vacuum chamber in the British fusion reactor JET has a wall made of solid metal, it can melt if it gets hit by a beam of runaway electrons. It is these runaway elementary particles that doctoral students Linnea Hesslow and Ola Embréus have successfully identified and decelerated.

Credit: Eurofusion

It takes high pressure and temperatures of about 150 million degrees to get atoms to combine. As if that was not enough, runaway electrons are wreaking havoc in the fusion reactors that are currently being developed. In the promising reactor type tokamak, unwanted electric fields could jeopardise the entire process. Electrons with extremely high energy can suddenly accelerate to speeds so high that they destroy the reactor wall.

It is these runaway electrons that doctoral students Linnea Hesslow and Ola Embréus have successfully identified and decelerated. Together with their advisor, Professor Tünde Fülöp at the Chalmers Department of Physics, they have been able to show that it is possible to effectively decelerate runaway electrons by injecting so-called heavy ions in the form of gas or pellets. For example, neon or argon can be used as "brakes".

When the electrons collide with the high charge in the nuclei of the ions, they encounter resistance and lose speed. The many collisions make the speed controllable and enable the fusion process to continue. Using mathematical descriptions and plasma simulations, it is possible to predict the electrons' energy - and how it changes under different conditions.

"When we can effectively decelerate runaway electrons, we are one step closer to a functional fusion reactor. Considering there are so few options for solving the world's growing energy needs in a sustainable way, fusion energy is incredibly exciting since it takes its fuel from ordinary seawater," says Linnea Hesslow.

She and her colleagues recently had their article published in the reputed journal Physical Review Letters. The results have also attracted a great deal of attention in the field of research. In a short period of time, 24-year-old Linnea Hesslow and 25-year-old Ola Embréus have given lectures at a number of international conferences, including the prestigious and long-standing Sherwood Fusion Theory Conference in Annapolis, Maryland, USA, where they were the only presenters from Europe.

"The interest in this work is enormous. The knowledge is needed for future, large-scale experiments and provides hope when it comes to solving difficult problems. We expect the work to make a big impact going forward," says Professor Tünde Fülöp.

Despite the great progress made in fusion energy research over the past fifty years, there is still no commercial fusion power plant in existence. Right now, all eyes are on the international research collaboration related to the ITER reactor in southern France.

"Many believe it will work, but it's easier to travel to Mars than it is to achieve fusion. You could say that we are trying to harvest stars here on earth, and that can take time. It takes incredibly high temperatures, hotter than the center of the sun, for us to successfully achieve fusion here on earth. That's why I hope research is given the resources needed to solve the energy issue in time," says Linnea Hesslow.

Facts: Fusion energy and runaway electrons

Fusion energy occurs when light atomic nuclei are combined using high pressure and extremely high temperatures of about 150 million degrees Celsius. The energy is created the same way as in the sun, and the process can also be called hydrogen power. Fusion power is a much safer alternative than nuclear power, which is based on the splitting (fission) of heavy atoms. If something goes wrong in a fusion reactor, the entire process stops and it grows cold. Unlike with a nuclear accident, there is no risk of the surrounding environment being affected.

The fuel in a fusion reactor weighs no more than a stamp, and the raw materials come from ordinary seawater.

As yet, fusion reactors have not been able to produce more energy than they are supplied. There is also a problem with so-called runaway electrons. The most common method of preventing this damage is to inject heavy ions, such as argon or neon, which act like brakes due to their large charge. A new model developed by researchers at Chalmers describes how much the electrons are decelerated, paving the way to making these runaway electrons harmless.

###

Read the scientific article: Effect of partially-screened nuclei on fast-electron dynamics.

The article was written by Linnea Hesslow, Ola Embréus, Adam Stahl, Timothy DuBois, Sarah Newton and Tünde Fülöp of the Department of Physics at Chalmers University of Technology, and Gergely Papp of the Max Planck Institute for Plasma Physics in Garching, Germany.

Media Contact

Christian Borg
christian.borg@chalmers.se
46-317-723-395

 @chalmersuniv

http://www.chalmers.se/en/ 

Christian Borg | EurekAlert!

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>