Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dark matter and particle acceleration in near space


A new space telescope will soon peer into the darkness of 'near space' (within a few thousand light years of Earth) to seek answers related to the field of high-energy astrophysics

Peering into darkness can strike fear into the hearts of some, but a new space telescope will soon peer into the darkness of "near space" (within a few thousand light years of Earth). Scientists are using the telescope to seek answers related to the field of high-energy astrophysics.

The Japan Aerospace Exploration Agency (JAXA) Kounotori H-II Transfer Vehicle (HTV-5) is seen berthed to the International Space Station. The external CALET experiment, which will search for signatures of dark matter, is seen being extracted from the unpressurized section by the station's robotic arm, Canadarm2. An aurora over the Earth limb is visible in the background.

Credit: NASA

The CALorimetric Electron Telescope (CALET) investigation will rely on the instrument to track the trajectory of cosmic ray particles and measure their charge and energy. The instrument is optimized for measuring electrons and gamma rays, which may contain the signature of dark matter or nearby sources of high-energy particle acceleration.

"The investigation is part of an international effort (involving Japan, Italy and USA) to understand the mechanisms of particle acceleration and propagation of cosmic rays in the galaxy, to identify their sources of acceleration, their elemental composition as a function of energy, and possibly to unveil the nature of dark matter," said CALET principal investigator Dr. Shoji Torii.

"We know that dark matter makes up about a quarter of the mass-energy of the universe, but we can't see it optically and don't know what it is," said Dr. John Wefel, and CALET co-principal investigator for the US team. "If CALET can see an unambiguous signature of dark matter, it could potentially produce a new understanding of the nature of dark matter."

Right now, scientists are much more certain what dark matter is not, rather than what it is. This research may help scientists identify dark matter and fit it, more accurately, into standard models of the universe.

CALET launched aboard the Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle "Kounotori" (HTV-5) in August 2015 and was placed on the International Space Station's Japanese Experiment Module - Exposed Facility just days after its arrival.

The instrument is a charged particle telescope designed to measure electrons, protons, nuclei and gamma rays. Unlike the telescopes that are used to pinpoint stars and planets in the night sky, CALET operates in a scanning mode. As it looks upward, it records each cosmic ray event that enters its field of view and triggers its detectors to take measurements of the cosmic ray. These measurements are recorded on the space station and sent to a ground station where they are fed into computers running analysis codes that allow scientists to reconstruct each event.

From the resulting measurements, scientists must then separate electrons from the protons, gamma rays and the higher Z elements (chemical elements with >1 proton in the nucleus). They then sort the particles by energy to extend the existing data to higher energies and search for signatures of new astrophysics processes and phenomena like dark matter and nearby particle acceleration to study cosmic ray propagation in the galaxy.

"The major theoretical model attributes dark matter to weakly interacting massive particles (WIMPs), whose nature is predicted by various high energy physics models," said Torii. "In these models, a WIMP would be its own antiparticle and, when two of them get together, they annihilate, producing known particles like electron/positron pairs, proton/anti-proton pairs, and gamma rays."

Searching for excess annihilation products (i.e. electrons and gamma rays) is one way to try to identify a dark matter candidate and this is where CALET helps scientists. CALET joins another ISS investigation searching for excess annihilation products, the Alpha Magenetic Spectrometer or AMS, which is looking at positrons and antiprotons to identify dark matter.

"Dark matter is still a puzzle," said Torii. "By measuring with good energy resolution the spectrum of high energy cosmic electrons and photons, CALET may make a discovery or exclude existing models."

"Seeing an appropriate signature in the electron spectrum and/or gamma rays would be extremely important since this would set the mass scale (weight) for the dark matter particles, which would in turn allow theorists to better determine new physics associated with the WIMP," said Torii, adding that it is possible that a signature may be found that is not indicative of dark matter, but rather indicates a nearby source of charged particle acceleration.

"The latter would be [a] huge achievement since no individual sources have ever been positively identified," said Torii. "Such objects seem to be able to accelerate particles to energies far higher than we can achieve on Earth using the largest machines and we want to learn how nature does this, with possible applications here on Earth."

Understanding the location of these sources as well as particle propagation (the time particles spend, and distance traveled, wandering around the galaxy) means scientists can infer the shape of the cosmic ray spectrum at the source. Gaining a better understanding of how cosmic rays originate and the mechanisms of particle acceleration and propagation is important to space travel and for understanding the radiation environment in space and on Earth.

"Basically, CALET is after new information about how our little corner of the universe works," said Torii, who added that the investigation underscores the importance of the space station as a platform for performing investigations and for successful international collaboration.

Rachel Hobson | EurekAlert!

Further reports about: Earth Electrons NASA Space Center acceleration cosmic ray dark dark matter gamma rays spectrum

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

More VideoLinks >>>