Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark matter and particle acceleration in near space

10.11.2015

A new space telescope will soon peer into the darkness of 'near space' (within a few thousand light years of Earth) to seek answers related to the field of high-energy astrophysics

Peering into darkness can strike fear into the hearts of some, but a new space telescope will soon peer into the darkness of "near space" (within a few thousand light years of Earth). Scientists are using the telescope to seek answers related to the field of high-energy astrophysics.


The Japan Aerospace Exploration Agency (JAXA) Kounotori H-II Transfer Vehicle (HTV-5) is seen berthed to the International Space Station. The external CALET experiment, which will search for signatures of dark matter, is seen being extracted from the unpressurized section by the station's robotic arm, Canadarm2. An aurora over the Earth limb is visible in the background.

Credit: NASA

The CALorimetric Electron Telescope (CALET) investigation will rely on the instrument to track the trajectory of cosmic ray particles and measure their charge and energy. The instrument is optimized for measuring electrons and gamma rays, which may contain the signature of dark matter or nearby sources of high-energy particle acceleration.

"The investigation is part of an international effort (involving Japan, Italy and USA) to understand the mechanisms of particle acceleration and propagation of cosmic rays in the galaxy, to identify their sources of acceleration, their elemental composition as a function of energy, and possibly to unveil the nature of dark matter," said CALET principal investigator Dr. Shoji Torii.

"We know that dark matter makes up about a quarter of the mass-energy of the universe, but we can't see it optically and don't know what it is," said Dr. John Wefel, and CALET co-principal investigator for the US team. "If CALET can see an unambiguous signature of dark matter, it could potentially produce a new understanding of the nature of dark matter."

Right now, scientists are much more certain what dark matter is not, rather than what it is. This research may help scientists identify dark matter and fit it, more accurately, into standard models of the universe.

CALET launched aboard the Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle "Kounotori" (HTV-5) in August 2015 and was placed on the International Space Station's Japanese Experiment Module - Exposed Facility just days after its arrival.

The instrument is a charged particle telescope designed to measure electrons, protons, nuclei and gamma rays. Unlike the telescopes that are used to pinpoint stars and planets in the night sky, CALET operates in a scanning mode. As it looks upward, it records each cosmic ray event that enters its field of view and triggers its detectors to take measurements of the cosmic ray. These measurements are recorded on the space station and sent to a ground station where they are fed into computers running analysis codes that allow scientists to reconstruct each event.

From the resulting measurements, scientists must then separate electrons from the protons, gamma rays and the higher Z elements (chemical elements with >1 proton in the nucleus). They then sort the particles by energy to extend the existing data to higher energies and search for signatures of new astrophysics processes and phenomena like dark matter and nearby particle acceleration to study cosmic ray propagation in the galaxy.

"The major theoretical model attributes dark matter to weakly interacting massive particles (WIMPs), whose nature is predicted by various high energy physics models," said Torii. "In these models, a WIMP would be its own antiparticle and, when two of them get together, they annihilate, producing known particles like electron/positron pairs, proton/anti-proton pairs, and gamma rays."

Searching for excess annihilation products (i.e. electrons and gamma rays) is one way to try to identify a dark matter candidate and this is where CALET helps scientists. CALET joins another ISS investigation searching for excess annihilation products, the Alpha Magenetic Spectrometer or AMS, which is looking at positrons and antiprotons to identify dark matter.

"Dark matter is still a puzzle," said Torii. "By measuring with good energy resolution the spectrum of high energy cosmic electrons and photons, CALET may make a discovery or exclude existing models."

"Seeing an appropriate signature in the electron spectrum and/or gamma rays would be extremely important since this would set the mass scale (weight) for the dark matter particles, which would in turn allow theorists to better determine new physics associated with the WIMP," said Torii, adding that it is possible that a signature may be found that is not indicative of dark matter, but rather indicates a nearby source of charged particle acceleration.

"The latter would be [a] huge achievement since no individual sources have ever been positively identified," said Torii. "Such objects seem to be able to accelerate particles to energies far higher than we can achieve on Earth using the largest machines and we want to learn how nature does this, with possible applications here on Earth."

Understanding the location of these sources as well as particle propagation (the time particles spend, and distance traveled, wandering around the galaxy) means scientists can infer the shape of the cosmic ray spectrum at the source. Gaining a better understanding of how cosmic rays originate and the mechanisms of particle acceleration and propagation is important to space travel and for understanding the radiation environment in space and on Earth.

"Basically, CALET is after new information about how our little corner of the universe works," said Torii, who added that the investigation underscores the importance of the space station as a platform for performing investigations and for successful international collaboration.

Rachel Hobson | EurekAlert!

Further reports about: Earth Electrons NASA Space Center acceleration cosmic ray dark dark matter gamma rays spectrum

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>