Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curiosity rover finds evidence of Mars' primitive continental crust

15.07.2015

ChemCam instrument shows ancient rock much like Earth's

The ChemCam laser instrument on NASA's Curiosity rover has turned its beam onto some unusually light-colored rocks on Mars, and the results are surprisingly similar to Earth's granitic continental crust rocks. This is the first discovery of a potential "continental crust" on Mars.


Igneous clast named Harrison embedded in a conglomerate rock in Gale crater, Mars, shows elongated light-toned feldspar crystals. The mosaic merges an image from Mastcam with higher-resolution images from ChemCam's Remote Micro-Imager.

Credit: NASA/JPL-Caltech/LANL/IRAP/U. Nantes/IAS/MSSS

"Along the rover's path we have seen some beautiful rocks with large, bright crystals, quite unexpected on Mars" said Roger Wiens of Los Alamos National Laboratory, lead scientist on the ChemCam instrument. "As a general rule, light-colored crystals are lower density, and these are abundant in igneous rocks that make up the Earth's continents."

Mars has been viewed as an almost entirely basaltic planet, with igneous rocks that are dark and relatively dense, similar to those forming the Earth's oceanic crust, Wiens noted. However, Gale crater, where the Curiosity rover landed, contains fragments of very ancient igneous rocks (around 4 billion years old) that are distinctly light in color, which were analyzed by the ChemCam instrument.

French and US scientists observed images and chemical results of 22 of these rock fragments. They determined that these pale rocks are rich in feldspar, possibly with some quartz, and they are unexpectedly similar to Earth's granitic continental crust. According to the paper's first author, Violaine Sautter, these primitive Martian crustal components bear a strong resemblance to a terrestrial rock type known to geologists as TTG (Tonalite-Trondhjemite-Granodiorite), rocks that predominated in the terrestrial continental crust in the Archean era (more than 2.5 billion years ago).

The results were published this week in Nature Geoscience, "In situ evidence for continental crust on early Mars."

Gale crater, excavated about 3.6 billion years ago into rocks of greater age, provided a window into the Red Planet's primitive crust. The crater walls provided a natural geological cut-away view 1-2 miles down into the crust. Access to some of these rocks, strewn along the rover's path, provided critical information that could not be observed by other means, such as by orbiting satellites.

###

ChemCam, a laser-induced breakdown spectrometer (LIBS), provides chemical analyses at a sub-millimeter scale; detailed images were provided by its Remote Micro Imager. Photo caption: Igneous clast named Harrison embedded in a conglomerate rock in Gale crater, Mars, shows elongated light-toned feldspar crystals. The mosaic merges an image from Mastcam with higher-resolution images from ChemCam's Remote Micro-Imager. Credit: NASA/JPL-Caltech/LANL/IRAP/U. Nantes/IAS/MSSS.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company and URS Corporation for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

Media Contact

Nancy Ambrosiano
nwa@lanl.gov
505-667-0471

 @LosAlamosNatLab

http://www.lanl.gov 

Nancy Ambrosiano | EurekAlert!

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>