Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of coherent states in molecules by incoherent electrons

23.10.2017

In a breakthrough experiment using a novel negative ion momentum imaging technique, researchers from Tata Institute of Fundamental Research, Mumbai India and Open University, Milton Kyenes, UK have shown -- for the first time -- that incoherent electrons displaying their quantum mechanical nature, can induce coherence in molecular systems on attachment.

Their latest results published in the Journal, Nature Physics (DOI: 10.1038/nphys4289), show that the coherence induced by the capture of single electron by H2 molecule results in the ejection of H? ion in preferentially backward direction with respect to the incoming electron beam.


Momentum images of H from H2 and D from D2 at different electron energies. The one at 4 eV for H is symmetric, while those above 14 eV are strongly asymmetric. The asymmetry in D is less pronounced and appear to change direction with change in electron energy.

Credit: E. Krishnakumar et al, Nature Physics

The other product of the dissociation is the H-atom in its excited state. In other words, this coherence induced in the molecule segregates the charge and excess energy in the system in a preferred manner. Similar measurements in the isotopomer of H2 namely D2 does not show such a strong asymmetry in ejection of the fragment ion but shows the reversal of the asymmetry as a function of incoming electron energy.

So far researchers have used such coherence induced by laser beams to control molecular dissociation and have considered it as the basis for possible control of chemical reactions using photons. But in that case, the coherence in the resulting excited molecular entity is understood to stem from the absorbed laser radiation. By demonstrating the presence of such coherence resulting from a capture of an incoherent electron, Prof. Krishnakumar and co-workers have shown that such coherence can also stem from the transfer of more than one value of angular momentum quanta.

On the capture of a low energy electron, a relatively unstable molecular negative ion is formed. Subsequently, this negative ion decays by ejecting the extra electron. However, if the ion survives against the electron ejection, it undergoes dissociation.

This is known as dissociative attachment. According to Prof. Krishnakumar, dissociative attachment is traditionally linked with transfer of multiple values of angular momentum quanta in the molecular system. However, it is for the first time such a quantum coherent response has been observed from a molecule.

Low energy electrons are ubiquitous and are known to play important role in variety of phenomena relevant to astrochemistry (where they participate in synthesis of new molecules), in radiation biology (where they cause chemical changes in living cell, plasma chemistry), atmospheric chemistry, radioactive waste management and nanolithography -- to name but a few.

In all these cases, dissociative attachment plays a critical role. The unstable excited molecular negative ion states are at the core of this process. However, due to very short lifetime of these species very little is known about them at present.

The group led by Prof. Krishnakumar and Dr. Prabhudesai in TIFR has pioneered research on several aspects of low energy electron interactions with molecules in gas and condensed phase with particular emphasis on the possibility of controlling chemical reactions using low energy electrons.

These new results point to rich unexplored dynamics of excited molecular negative ions that might open up new possibilities in inducing chemical control. They also pose a challenge to theoreticians to come up with a detailed model for the negative ion chemistry that is associated with low energy free electron scattering.

These measurements were carried out by Prof. Krishnakumar using an experiment built by him at the Open University in UK, where he was on invitation as a Marie Curie Professor to help build a novel electron scattering experiment for the European scientists, similar to the one he had conceived and built at TIFR. Dr. Prabhudesai and Prof. Krishnakumar provided the interpretation of the data along with the model.

Media Contact

E. Krishnakumar
ekkumar@tifr.res.in
91-986-901-3407

http://www.tifr.res.in 

E. Krishnakumar | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>