Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating high-resolution 3D videos

05.02.2015

A method of generating high-resolution, full-color moving holograms in three dimensions shows life from a new angle

Three-dimensional (3D) movies, which require viewers to wear stereoscopic (i.e. Related to the technique of creating an impression of depth by showing two slightly offset flat images to each eye) glasses, have become very popular in recent years. However, the 3D effect produced by the glasses cannot provide perfect depth cues.


A new way of streaming high-resolution, full-color full-parallax three-dimensional (3D) hologram videos may have applications in the entertainment and medical imaging industries. © 2015 A*STAR Data Storage Institute

Furthermore, it is not possible to move one’s head and observe that objects appear different from different angles — a real-life effect known as motion parallax. Now, A*STAR researchers have developed a new way of generating high-resolution, full-color, 3D videos that uses holographic technology [1].

Holograms are considered to be truly 3D, because they allow the viewer to see different perspectives of a reconstructed 3D object from different angles and locations (see image). Like a photograph, a hologram contains information about the size, shape and color of an object.

Where holograms differ from photographs is that they are created using lasers, which can produce the complex light interference patterns, including spatial data, required to re-create a complete 3D object.

However, generating high-resolution, moving holograms to replace current 3D imaging technology has proved difficult. To enhance the resolution of their holographic videos, Xuewu Xu and colleagues at the Data Storage Institute in Singapore used an array of spatial light modulators (SLMs).

“SLMs are devices used in current two-dimensional projectors to alter light waves and generate projections,” explains Xu. “In a 3D holographic display, SLMs are used to display hologram pixels and create 3D objects by light diffraction. Each SLM in our system can display up to 1.89 billion hologram pixels every second, but this resolution is not high enough for a seamless large video display.”

To address this challenge, Xu and his team divided every frame of their hologram video into 288 sub-holograms. They then streamed the sub-holograms through 24 high-speed SLMs stacked together in an array.

This technique was combined with optical scan tiling, which uses a scanning mirror to combine the signals from the SLMs, thus filling in any gaps in the physical tiling array. Finally, the researchers sped up the full-color video playback using powerful graphics processing units. This combination of technologies produced one high-resolution, full-parallax moving hologram displaying 45 billion pixels per second.

“We increased the resolution of the holographic display system by 24 times,” states Xu. “The full-color 3D holographic video plays at a rate of 60 frames per second, so it appears seamless to the human eye.”

Potential applications of the new technique include 3D entertainment and medical imaging. However, new SLM devices with a smaller pixel size, higher resolution and faster frame rate are required before large-scale 3D holographic video displays can become reality.

Reference

[1] Xu, X., Liang, X., Pan, Y., Zheng, R. & Lum, Z. A. Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display. Optical Review 21, 220–225 (2014).


ssociated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>