Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic cinema: Astronomers make 3-D movies of plasma tubes

01.06.2015

By creatively using a radio telescope to see in 3D, astronomers have detected the existence of tubular plasma structures in the inner layers of the magnetosphere surrounding the Earth.

"For over 60 years, scientists believed these structures existed but by imaging them for the first time, we've provided visual evidence that they are really there," said Cleo Loi of the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) and School of Physics at the University of Sydney in Australia.


This is an artist's impression of tubular plasma structures in the Earth's magnetosphere, 600 kilometres above the ground.

Credit: CAASTRO/Mats Bjorkland

Ms Loi is the lead author on this research, undertaken as part of her award-winning undergraduate thesis and recently published in Geophysical Research Letters. In collaboration with international colleagues, she identified the structures.

"The discovery of the structures is important because they cause unwanted signal distortions that could, as one example, affect our civilian and military satellite-based navigation systems. So we need to understand them," Ms Loi said.

The region of space around the Earth occupied by its magnetic field, called the magnetosphere, is filled with plasma that is created by the atmosphere being ionised by sunlight.

The innermost layer of the magnetosphere is the ionosphere, and above that is the plasmasphere. They are embedded with a variety of strangely shaped plasma structures including, as has now been revealed, the tubes.

"We measured their position to be about 600 kilometres above the ground, in the upper ionosphere, and they appear to be continuing upwards into the plasmasphere. This is around where the neutral atmosphere ends, and we are transitioning to the plasma of outer space," explained Ms Loi.

Using the Murchison Widefield Array (MWA), a radio telescope located in the Western Australian desert, Ms Loi found that she could map large patches of the sky and even exploit the MWA's rapid snapshot capabilities to create a movie - effectively capturing the real-time motions of the plasma.

"We saw a striking pattern in the sky where stripes of high-density plasma neatly alternated with stripes of low-density plasma. This pattern drifted slowly and aligned beautifully with the Earth's magnetic field lines, like aurorae," Ms Loi said.

"We realised we may be onto something big and things got even better when we invented a new way of using the MWA."

The MWA consists of 128 antenna 'tiles' spread over an area roughly three by three kilometres that work together as one instrument - but by separating the signals from tiles in the east from the ones in the west, the astronomers gave the MWA the power to see in 3D.

"This is like turning the telescope into a pair of eyes, and by that we were able to probe the 3D nature of these structures and watch them move around," said Ms Loi.

"We were able to measure the spacing between them, their height above the ground and their steep inclination. This has never been possible before and is a very exciting new technique."

This ability adds yet another accolade to the MWA's name after it had already proven its worth as a powerful precursor instrument to the Square Kilometre Array (SKA), and now the MWA's 3D vision has the potential to provide many more in-depth analyses of the formation of plasma structures.

"It is to Cleo's great credit that she not only discovered this but also convinced the rest of the scientific community. As an undergraduate student with no prior background in this, that is an impressive achievement," said Ms Loi's supervisor Dr Tara Murphy, also of CAASTRO and School of Physics at the University of Sydney.

"When they first saw the data, many of her senior collaborators thought the results were literally 'too good to be true' and that the observation process had somehow corrupted the findings, but over the next few months, Cleo managed to convince them that they were both real and scientifically interesting."

###

Ms Loi has been awarded the 2015 Bok Prize of the Astronomical Society of Australia for her work.

Media Contact

Verity Leatherdale
verity.leatherdale@sydney.edu.au
61-403-067-342

 @SydneyUni_Media

http://www.usyd.edu.au/ 

Verity Leatherdale | EurekAlert!

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>