Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Correlated magnets made out of single atoms

29.09.2016

Scientists at MPQ observe antiferromagnetic correlations in one-dimensional fermionic quantum many-body systems

Solid state physics offers a rich variety of intriguing phenomena, several of which are not yet fully understood. Experiments with fermionic atoms in optical lattices get very close to imitating the behaviour of electrons in solid state crystals, thus forming a well-controlled quantum simulator for these systems.


Graphics: Martin Boll, Quantum Many-Body Systems Division, MPQ

Now a team of scientists around Professor Immanuel Bloch and Dr. Christian Groß at the Max Planck Institute of Quantum Optics have observed the emergence of antiferromagnetic order over a correlation length of several lattice sites in a chain of fermionic atoms. Contrary to the ferromagnetism we experience in everyday life, these antiferromagnets are characterized by an alternating alignment of the elementary magnetic moment associated with each electron or atom.

Combining their quantum gas microscope with advanced local manipulation techniques, the scientists were able to simultaneously observe the spin and the density distribution with single-site resolution and single atom sensitivity. By approaching the conditions prevailing in macroscopic crystals with fermionic quantum many-body systems, one hopes to achieve a better understanding of phenomena such as the so-called high-temperature superconductivity. (Science, 16 September 2016, DOI:10.1126/science.aag1635).

The experiment started with cooling a cloud of fermionic lithium-6 atoms down to extremely low temperatures, a millionth of a Kelvin above absolute zero. These ultracold fermions were then trapped by light fields and forced into a single plane, which in turn was further split in several one-dimensional tubes. Finally, an optical lattice was applied along the tubes mimicking the periodic potential that electrons see in a real material.

On average, the one-dimensional optical lattices were completely filled, meaning that each lattice site was occupied with exactly one atom. Two internal quantum states of the lithium atoms mimic the magnetic moment of the electrons, which can point either upwards or downwards. As long as the temperature of the system is high compared to the magnetic interaction between these spins, only the density distribution of the system shows a regular pattern dictated by the optical lattice. However, below a certain temperature the magnetic moments of neighbouring atoms are expected to anti-align, leading to antiferromagenic correlations. “These correlations arise because the system aims to lower its energy”, Martin Boll, doctoral student at the experiment, explains. “The underlying mechanism is called “superexchange” which means that the magnetic moments of neighbouring atoms exchange their directions.”

The team around Christian Groß and Immanuel Bloch had to tackle two main challenges: First, it was necessary to measure the particle density with high resolution to unambiguously identify single particles and holes on their individual lattice sites. This was achieved with the quantum gas microscope where a high resolution objective images the atoms all at once, such that a series of photographic snapshots of the atomic gas can be taken. “The second really big challenge was the separation of atoms based on their magnetic orientations”, says Martin Boll. “To this end, we combined an optical superlattice with a magnetic gradient that shifted the potential minima depending on the orientation of the magnetic moment. As a consequence, opposite magnetic moments were separated into two different sites of the local double well potential created by the superlattice. In a series of measurements we have tuned this method to such a degree that we obtained a splitting fidelity of nearly 100 percent.”

Having all these tools at hand, the team succeeded to observe the emergence of antiferromagnetic correlations that extended over three sites, well beyond nearest-neighbours (see figure 1). “Quantum simulations with fermions in optical lattices is of particular interest because it may lead to a better understanding of the so-called “high-temperature” superconductivity for which the interplay of holes and antiferromagnetic correlations is believed to be crucial.”, Dr. Christian Groß points out. “In the near future, we might be able to even prepare our samples with a certain degree of hole-doping that resembles the conditions in superconducting materials.” Olivia Meyer-Streng

Original publication:
Martin Boll, Timon A. Hilker, Guillaume Salomon, Ahmed Omran, Jacopo Nespolo, Lode Pollet, Immanuel Bloch, Christian Gross
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains
Science, 16 September 2016, DOI:10.1126/science.aag1635

Contact:
Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
Ludwig-Maximilians-Universität Munich, and
Director at the Max Planck Institute of
Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching,
Phone: +49 (0)89 / 32 905 - 138
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 713
E-mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>