Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Correlated magnets made out of single atoms

29.09.2016

Scientists at MPQ observe antiferromagnetic correlations in one-dimensional fermionic quantum many-body systems

Solid state physics offers a rich variety of intriguing phenomena, several of which are not yet fully understood. Experiments with fermionic atoms in optical lattices get very close to imitating the behaviour of electrons in solid state crystals, thus forming a well-controlled quantum simulator for these systems.


Graphics: Martin Boll, Quantum Many-Body Systems Division, MPQ

Now a team of scientists around Professor Immanuel Bloch and Dr. Christian Groß at the Max Planck Institute of Quantum Optics have observed the emergence of antiferromagnetic order over a correlation length of several lattice sites in a chain of fermionic atoms. Contrary to the ferromagnetism we experience in everyday life, these antiferromagnets are characterized by an alternating alignment of the elementary magnetic moment associated with each electron or atom.

Combining their quantum gas microscope with advanced local manipulation techniques, the scientists were able to simultaneously observe the spin and the density distribution with single-site resolution and single atom sensitivity. By approaching the conditions prevailing in macroscopic crystals with fermionic quantum many-body systems, one hopes to achieve a better understanding of phenomena such as the so-called high-temperature superconductivity. (Science, 16 September 2016, DOI:10.1126/science.aag1635).

The experiment started with cooling a cloud of fermionic lithium-6 atoms down to extremely low temperatures, a millionth of a Kelvin above absolute zero. These ultracold fermions were then trapped by light fields and forced into a single plane, which in turn was further split in several one-dimensional tubes. Finally, an optical lattice was applied along the tubes mimicking the periodic potential that electrons see in a real material.

On average, the one-dimensional optical lattices were completely filled, meaning that each lattice site was occupied with exactly one atom. Two internal quantum states of the lithium atoms mimic the magnetic moment of the electrons, which can point either upwards or downwards. As long as the temperature of the system is high compared to the magnetic interaction between these spins, only the density distribution of the system shows a regular pattern dictated by the optical lattice. However, below a certain temperature the magnetic moments of neighbouring atoms are expected to anti-align, leading to antiferromagenic correlations. “These correlations arise because the system aims to lower its energy”, Martin Boll, doctoral student at the experiment, explains. “The underlying mechanism is called “superexchange” which means that the magnetic moments of neighbouring atoms exchange their directions.”

The team around Christian Groß and Immanuel Bloch had to tackle two main challenges: First, it was necessary to measure the particle density with high resolution to unambiguously identify single particles and holes on their individual lattice sites. This was achieved with the quantum gas microscope where a high resolution objective images the atoms all at once, such that a series of photographic snapshots of the atomic gas can be taken. “The second really big challenge was the separation of atoms based on their magnetic orientations”, says Martin Boll. “To this end, we combined an optical superlattice with a magnetic gradient that shifted the potential minima depending on the orientation of the magnetic moment. As a consequence, opposite magnetic moments were separated into two different sites of the local double well potential created by the superlattice. In a series of measurements we have tuned this method to such a degree that we obtained a splitting fidelity of nearly 100 percent.”

Having all these tools at hand, the team succeeded to observe the emergence of antiferromagnetic correlations that extended over three sites, well beyond nearest-neighbours (see figure 1). “Quantum simulations with fermions in optical lattices is of particular interest because it may lead to a better understanding of the so-called “high-temperature” superconductivity for which the interplay of holes and antiferromagnetic correlations is believed to be crucial.”, Dr. Christian Groß points out. “In the near future, we might be able to even prepare our samples with a certain degree of hole-doping that resembles the conditions in superconducting materials.” Olivia Meyer-Streng

Original publication:
Martin Boll, Timon A. Hilker, Guillaume Salomon, Ahmed Omran, Jacopo Nespolo, Lode Pollet, Immanuel Bloch, Christian Gross
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains
Science, 16 September 2016, DOI:10.1126/science.aag1635

Contact:
Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
Ludwig-Maximilians-Universität Munich, and
Director at the Max Planck Institute of
Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching,
Phone: +49 (0)89 / 32 905 - 138
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 713
E-mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>