Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Corrected sunspot history suggests climate change not due to natural solar trends


The Maunder Minimum, between 1645 and 1715, when sunspots were scarce and the winters harsh, strongly suggests a link between solar activity and climate change. Until now there was a general consensus that solar activity has been trending upwards over the past 300 years (since the end of the Maunder Minimum), peaking in the late 20th century -- called the Modern Grand Maximum by some [1].

This trend has led some to conclude that the Sun has played a significant role in modern climate change. However, a discrepancy between two parallel series of sunspot number counts has been a contentious issue among scientists for some time.

A drawing of the Sun made by Galileo Galilei on 23 June 1613 showing the positions and sizes of a number of sunspots. Galileo was one of the first to observe and document sunspots.

Credit: The Galileo Project/M. Kornmesser

The two methods of counting the sunspot number -- the Wolf Sunspot Number and the Group Sunspot Number [2] -- indicated significantly different levels of solar activity before about 1885 and also around 1945. With these discrepancies now eliminated, there is no longer any substantial difference between the two historical records.

The new correction of the sunspot number, called the Sunspot Number Version 2.0, led by Frédéric Clette (Director of the World Data Centre [WDC]-SILSO), Ed Cliver (National Solar Observatory) and Leif Svalgaard (Stanford University, California, USA), nullifies the claim that there has been a Modern Grand Maximum.

The results, presented at the IAU XXIX General Assembly in Honolulu, Hawai`i, today, make it difficult to explain the observed changes in the climate that started in the 18th century and extended through the industrial revolution to the 20th century as being significantly influenced by natural solar trends.

The sunspot number is the only direct record of the evolution of the solar cycle over multiple centuries and is the longest scientific experiment still ongoing.

The apparent upward trend of solar activity between the 18th century and the late 20th century has now been identified as a major calibration error in the Group Sunspot Number. Now that this error has been corrected, solar activity appears to have remained relatively stable since the 1700s [3].

The newly corrected sunspot numbers now provide a homogenous record of solar activity dating back some 400 years. Existing climate evolution models will need to be reevaluated given this entirely new picture of the long-term evolution of solar activity. This work will stimulate new studies both in solar physics (solar cycle modelling and predictions) and climatology, and can be used to unlock tens of millennia of solar records encoded in cosmogenic nuclides found in ice cores and tree rings. This could reveal more clearly the role the Sun plays in climate change over much longer timescales.

The new data series and the associated information are distributed from WDC-SILSO [4].



[1] Note that the trend being discussed here is over longer periods than the familiar 11-year solar cycle.

[2] The Wolf Sunspot Number (WSN) ranks as the oldest time series in solar terrestrial physics still in use today, having remained untouched for over 160 years. Established by Rudolf Wolf in 1856, the method is based on both the number of groups of sunspots and the total number of spots within all the groups.

In 1994 the question began to arise as to whether the WSN was the correct method of constructing a historical sunspot record. The limitations of early telescopes meant that it was easy for smaller spots to be missed. With this in mind, a new index was established in 1998: the Group Sunspot Number (GSN), which is easier to measure and goes all the way back to the measurements done by Galileo, Thomas Harriot and Scheiner. This index was based solely on the number of sunspot groups. Establishing this system performed a valuable service by finding and digitising many sunspot observations not known or used by Wolf and his successors, effectively doubling the amount of data available before Wolf's tabulations.

Unfortunately, the two series disagreed seriously before about 1885, and the GSN has not been maintained since the 1998 publication of the series. The GSN also revealed a pattern of continually rising solar activity, beginning in the 18th century and culminating in a Modern Grand Maximum in the latter part of the 20th century, which Wolf's method does not suggest. Overall, the discrepancies were too large and the applications (solar dynamo, climate change, space climate) too prominent for the two systems to continue to exist in disagreement.

[3] They remain within a constant amplitude range for the normal 11-year cycle.

[4] WDC-SILSO is located in Brussels and is the current curator of the Sunspot Number time series and associated data products. It is a member of the World Data System of the International Council for Science (ICSU), dedicated to the preservation and distribution of large and/or long-duration reference datasets in all domains of science.

More information

The IAU is the international astronomical organisation that brings together more than 10 000 professional astronomers from almost 100 countries. Its mission is to promote and safeguard the science of astronomy in all its aspects through international cooperation. The IAU also serves as the internationally recognised authority for assigning designations to celestial bodies and the surface features on them. Founded in 1919, the IAU is the world's largest professional body for astronomers.


* Sunspot Index and Long-term Solar Observations -

* Photos from the IAU General Assembly -


Frédéric Clette
Director of WDC-SILSO
Royal Observatory of Belgium, Brussels, Belgium

Leif Svalgaard
tanford University
California, USA
Cell: +1 707-772-7595

Ed Cliver
National Solar Observatory, USA Email:

Lars Lindberg Christensen
IAU Press Officer
Garching bei München, Germany
Tel: +1 808-690-0735
Cell: +49 173 38 72 621

Lars Lindberg Christensen | EurekAlert!

Further reports about: Observatory Sunspot activity physics solar activity solar cycle

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>