Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Construction set of magnon logic extended: Magnon spin currents controlled via spin valve structure

15.03.2018

Magnon spintronics employs magnons instead of electrical charges for information processing

In the emerging field of magnon spintronics, researchers investigate the possibility to transport and process information by means of so-called magnon spin currents. In contrast to electrical currents, on which todays information technology is based, magnon spin currents do not conduct electrical charges but magnetic momenta.


Depending on the magnetic configuration of the spin valve, the electrical signal is transmitted (bottom) or suppressed (top).

ill./©: Joel Cramer

These are mediated by magnetic waves, or so-called magnons, which analogous to sound waves propagate through magnetic materials. One fundamental building block of magnon spintronics is magnon logic, which, for instance, allows to perform logic operations and thus information processing by the superposition of spin currents. An international team of physicists from Johannes Gutenberg University Mainz (JGU) and the University of Konstanz in Germany and Tohoku University in Sendai, Japan, recently succeeded in adding a further element to the construction set of magnon logic.

In a so-called spin valve structure, which amongst others comprises several ferromagnets, it was possible to demonstrate that the detection efficiency of magnon currents depends on the magnetic configuration of the device. Generally, this allows to control the transmission or blocking of incoming information. The research work has been published in the online journal Nature Communications with a fellow of the JGU-based Graduate School of Excellence Materials Science in Mainz (MAINZ) as first author.

The essential aim of magnon spintronics is to replace the electrical charge as information carrier in information technological concepts by magnons. Among other things, magnons offer the possibility of wave-based computing, which provides more options for logical data processing. Magnons furthermore propagate in magnetic insulators with comparably small losses, which holds out the prospect of the implementation of improved energy efficiency of data processing.

The investigated spin valve structure is a trilayer system comprising the insulating ferromagnet yttrium iron garnet (YIG), the insulating antiferromagnet cobalt(II) oxide (CoO), and the metallic ferromagnet cobalt (Co): YIG/CoO/Co. By means of the oscillating magnetic fields of irradiated microwaves the deliberate rotation of the YIG magnetization is induced, which emits a magnon spin current into the CoO. In the metallic Co layer the magnon spin current gets converted into a charge current due to the so-called inverse spin Hall effect and is thus detected.

Switch-like device forwards or suppresses magnon current as electric signal

The experiment demonstrated that the amplitude of the detected signal strongly depends on the magnetic configuration of the spin valve. In the case of antiparallel alignment of the YIG and Co magnetization, the signal amplitude is approximately 120 percent larger than in the parallel state. The repetitive switching of the Co magnetization further revealed the robustness of the effect and likewise its suitability for long-time operation.

"Altogether, this effect to some extent allows the implementation of a switch-like device, which suppresses or forwards the magnon current as an electrical signal," said Joel Cramer, first author of the article and member of the Graduate School of Excellence Materials Science in Mainz. "The result of our experiment is an effect which might find application in prospective magnon logic operations, thus yielding an essential contribution to the field of magnon spintronic", Cramer added.

Collaboration of internationally leading research teams in the field of spintronics

"Our collaboration with internationally leading groups within the field of spin transport in insulators follows a long tradition, especially in the Collaborative Research Center Spin-X, funded by the German Research Foundation (DFG). With the support of the German Academic Exchange Service (DAAD) and the MAINZ Graduate School, this collaboration could even be extended to long-term stays of guest students from Japan here in Mainz and vice versa," said Professor Mathias Kläui, Director of MAINZ.

"The work now published in Nature Communications was mainly performed during a guest stay of two of our students and myself in Japan. I enjoyed it very much to be closer to the experiment and to even contribute to the measurements. Hence, I would like to thank the group of Professor Saitoh and the Institute for Materials Research at Tohoku University for their hospitality and the excellent collaboration," added Kläui.

The theory for this work was jointly developed by the groups in Mainz and Konstanz. There is a particularly strong, long, and fruitful collaboration with the Magnetic Materials group of Professor Ulrich Nowak at the University of Konstanz. "Now that our third joint project proposal was evaluated positively, I am looking forward to further intense collective work," added Kläui.

The MAINZ Graduate School of Excellence was approved through the German Federal and State Excellence Initiative in 2007 and received a five-year funding extension in the second round in 2012. It consists of work groups from Johannes Gutenberg University Mainz, TU Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz and offers excellent national and international doctoral candidates in natural science disciplines an exceptional training in materials science. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Problems of spin transport and the creation and detection of spin currents are investigated within MAINZ as part of the CRC/Transregio 173: Spin+X, which has been funded by the German Research Foundation since 2016.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_magnonen_ventil.jpg
Depending on the magnetic configuration of the spin valve, the electrical signal is transmitted (bottom) or suppressed (top).
ill./©: Joel Cramer

Publication:
Joel Cramer et al.
Magnon detection using a ferroic collinear multilayer spin valve
Nature Communications, 14 March 2018
DOI: 10.1038/s41467-018-03485-5
https://www.nature.com/articles/s41467-018-03485-5

Contact:
Joel Cramer
Physics of Condensed Matter
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23637
fax +49 6131 39-24076
e-mail: jocramer@uni-mainz.de

Professor Dr. Mathias Kläui
Physics of Condensed Matter
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Related links:
https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui Laboratory at the Institute of Physics at JGU ;
https://www.iph.uni-mainz.de/index_ENG.php – Institute of Physics at JGU
http://www.mainz.uni-mainz.de/ - Graduate School of Excellence Materials Science in Mainz

Read more:
http://www.uni-mainz.de/presse/20410_ENG_HTML.php – press release "International team of scientists unveils fundamental properties of the spin Seebeck effect” (28 July 2016)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>