Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Confirming Einstein, Scientists Find 'Spacetime Foam' Not Slowing Down Photons from Far-Away Gamma Ray Burst

17.03.2015

One hundred years after Albert Einstein formulated the Theory of Relativity, an international team has proposed another experimental proof. In a paper published today in Nature Physics, researchers from the Hebrew University of Jerusalem, the Open University of Israel, Sapienza University of Rome, and University of Montpellier in France, describe a proof for one of the theory's basic assumptions: the idea that all light particles, or photons, propagate at exactly the same speed.

The researchers analyzed data, obtained by NASA's Fermi Gamma-ray Space Telescope, of the arrival times of photons from a distant Gamma-Ray Burst. The data showed that photons traveling for billions of years from the distant burst toward Earth all arrived within a fraction of a second of each other.


Prof. Tsvi Piran, the Schwartzmann University Chair at the Hebrew University’s Racah Institute of Physics (Photo by Sasson Tiram for Hebrew University)

This finding indicates that the photons all moved at the same speed, even though different photons had different energies. This is one of the best measurements ever of the independence of the speed of light from the energy of the light particles.

Beyond confirming the General Theory of Relativity, the observation rules out one of the interesting ideas concerning the unification of General Relativity and Quantum Theory. While these two theories are the pillars of physics today, they are still inconsistent and there is an intrinsic contradiction between the two that is partially based on Heisenberg’s Uncertainty Principle that is at the heart of Quantum Theory.

One of the attempts to reconcile the two theories is the idea of “space-time foam.” According to this concept, on a microscopic scale space is not continuous, and instead it has a foam-like structure. The size of these foam elements is so tiny that it is difficult to imagine and is at present impossible to measure directly. However light particles that are traveling within this foam will be affected by the foamy structure, and this will cause them to propagate at slightly different speeds depending on their energy.

Yet this experiment shows otherwise. The fact that all the photons with different energies arrived with no time delay relative to each other indicates that such a foamy structure, if it exists at all, has a much smaller size than previously expected.

“When we began our analysis, we didn’t expect to obtain such a precise measurement,” said Prof. Tsvi Piran, the Schwartzmann University Chair at the Hebrew University’s Racah Institute of Physics and a leader of the research. “This new limit is at the level expected from quantum gravity theories and can direct us how to combine Quantum Theory and Relativity."

The research paper, 'A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation,' appears on the Nature Physics website (DOI 10.1038/nphys3270).

This research was supported by an ERC advanced grant; the I-CORE Israeli Centers Of Research Excellence; the Israel Space Agency; the joint Israel Science Foundation (ISF) and the National Natural Science Foundation of China (NSFC) program; and the Templeton Foundation.

Albert Einstein was a founder of the Hebrew University of Jerusalem. He bequeathed his writings, intellectual heritage and the rights to his image to the Hebrew University.

For information, contact:

Dov Smith
Hebrew University Foreign Press Liaison
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

www.huji.ac.il

Dov Smith | Hebrew University

More articles from Physics and Astronomy:

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

nachricht Evidence of the Higgs Particle’s Decay in Quarks
19.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Nesting aids make agricultural fields attractive for bees

20.07.2017 | Life Sciences

World first: Massive thrombosis removed during early pregnancy

20.07.2017 | Health and Medicine

The Kitchen Sponge – Breeding Ground for Germs

20.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>