Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer made materials

17.03.2014

Physicists of the Max-Planck-Institut für Eisenforschung are able to predict the properties of structural and functional materials with hitherto unprecedented accuracy.

Point defects, for example missing atoms (so called vacancies) significantly influence the performance and durability of modern materials. Even smallest defect concentrations of 1:100,000 can affect the properties of microelectronic devices like processors, solar cells and structural materials like steel. 


The picture shows the distribution of atoms next to a defect in a copper crystal at its melting point (1084° C). The green spots show the positions of the atoms at the absolute zero point. The dashed grey circle in the middle shows a lattice vacancy, a place where one atom is missing in the lattice. At high temperatures the atoms vibrate around their lattice position, illustrated by the black cloud.

The results of the Max Planck scientists show a significantly different distribution (orange clouds) by considering the interaction of lattice vibrations. The atoms vibrate closer to the vacancy with increasing temperatures. This leads to a change in energies and vacancies and thereby to a higher defect concentration.

Matter is made out of atoms, which form in the case of crystalline materials a highly ordered lattice. However, the individual atoms do not sit motionless on their lattice sites, but vibrate with an extremely high frequency around their positions – scientists therefore speak about lattice vibrations.

To analyse the concentration of defects in a material and draw conclusions about the materials behaviour, there were until now two possible strategies: Theoretical physicists calculated the energy of the lattice-defect formation, which is directly linked to the number of defects, but their methods were limited to the absolute zero point, i.e. to -273.15 °C.

Experimentalists, on the other hand, measured defect concentrations at high temperatures (above 300 °C). In fact, there was always a large temperature range without available data. As a matter of fact, it is exactly this range around room temperature that is important for materials that are used in our everyday life.

Physicists in the department ‘Computational Materials Design’ at the Max-Planck-Institut für Eisenforschung (MPIE) now achieved a breakthrough in the development of computer simulations that are also able to describe this missing temperature range.

“Established methods for the energetics of lattices were previously not able to include the complex interaction of different modes of lattice vibrations. Thanks to various methodical breakthroughs, we are now able to remove this shortcoming for all relevant temperatures. And we were surprized to see how significantly these temperature-dependent interactions influence the amount of defects in a material”, explains Albert Glensk, doctoral student at the MPIE.

“Formerly predicted results for defects in crystalline materials have to be corrected now. Our calculations show that actual defect energies might easily be about 20% lower than previous estimates. More importantly, we are now for the first time able to close the gap between theory and experiment. All experimental data can be perfectly described with our theory”, concludes Glensk.

With these new insights, scientists are able to calculate and predict precisely how many point defects a material has at a certain temperature and derive conclusions about the performance of a material. This serves as an additional corner stone for the optimization of basic materials on the computer and the prediction of their potential failures as well as strategies to avoid them in production processes.

Original publication:
A. Glensk; B. Grabowski; T. Hickel; J. Neugebauer: Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Im-portance of Local Anharmonicity Revealed by Ab initio Thermody-namics. Physical Review X 4 (2014) 011018. American Physical So-ciety.
DOI: 10.1103/PhysRevX.4.011018

Weitere Informationen:

http://www.mpie.de
http://journals.aps.org/prx/edannounce/PhysRevX.4.010001

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>