Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined effort for structural determination

16.04.2015

Combining powder diffraction data with electron crystallography can give us a clearer view of modulated structures [Batuk et al. (2015). Acta Cryst. B71, 127-143; doi: 10.1107/S2052520615005466]

Electron crystallography has begun to be used routinely for solving otherwise intractable structures. When performed in an aberration-corrected microscope and combined with spectroscopic techniques, it can offer unprecedented detail down to sub-angstrom resolution.


This is the refined structure of (Pb,Bi)1 - xFe1 + xO3 - y.

Credit: Batuk et al.

"The result of all this progress is that electron crystallography gives answers to more and more questions that used to be the domain of X-ray or neutron diffraction, and is especially useful when the X-ray or neutron experiment needs to be performed on a powder material, which limits the diffraction information available," explains Lukas Palatinus of the Czech Academy of Sciences in Prague in a commentary piece in Acta Crystallographica Section B [Palatinus (2015). Acta Cryst. B71, 125-126; doi: 10.1107/S2052520615005910].

Palatinus points out that when confronted with modulated structures, in which every atomic position is perturbed from one unit cell to the next by a modulation function, the construction of the structure model is much more complicated than for non-modulated materials.

While effective techniques have been developed techniques to solve this problem from single crystal diffraction data, for powder diffraction data another approach to get around the problem is needed, which is where the work of Batuk and colleagues comes to the fore.

Batuk and colleagues have now shown how electron crystallography tools can be used to sidestep the limitations of powder diffraction and complement the structure analysis of modulated structures by powder diffraction. "The authors combine the results of their previous research with new results to provide an impressive overview of the available methods and information they can provide," explains Palatinus.

The team investigated a series of anion-deficient perovskites to demonstrate proof of principle. In these materials, modulation arises as a consequence of the presence of crystallographic shear planes that have an average periodicity that is not in synchrony with the materials' basic periodicity.

Palatinus also points out that the choice of these materials was good for the given purpose. "These structures exhibit a wide variety of features that complicate the structure analysis of modulated structures from powder patterns," explains Palatinus. "It allowed the authors to illustrate many techniques and applications like the simultaneous imaging of heavy and light elements, atomic resolution chemical mapping or the mapping of the coordination number."

Additionally, given the advent of perovskites in recent years as the focus of research into solar panel materials and other semiconductor applications new detailed information about their structures and properties are increasingly important.

"The local crystallographic information acquired using the scanning transmission electron microscopy (STEM)-based methods in combination with the refinement from powder diffraction data can significantly improve the reliability of the crystal structure investigation," Batuk and colleagues report.

Of course, electron crystallography is very unlikely to make X-ray or neutron diffraction redundant any time soon, points out Palatinus, not least because a lot of materials are too short lived under the degrading eye of the electron beam. Moreover, electron techniques generally cannot be applied in situ in chemical reaction environments nor under pressure, instead requiring near vacuum conditions.

Nevertheless, he adds that the team "shows convincingly how the electron crystallography methods have grown to a rich source of detailed information on the crystal structures, and it should convince any reader that resorting to these methods may very quickly solve problems that seem intractable by the more traditional approaches."

It seems that as with many areas of study, a combined effort, the teamwork between different techniques that can complement each others, is needed to obtain the best results. "The key to success indeed lies in exploiting the complementarity and synergy between various methods," Palatinus says.

Media Contact

Jonathan Agbenyega
ja@iucr.org
44-124-434-2878

 @iucr

http://www.iucr.org 

Jonathan Agbenyega | EurekAlert!

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>