Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collapsing energy bands to explore their geometric structure

01.06.2016

MPQ/LMU scientists devise new interferometer to probe the geometry of band structures.

The geometry and topology of electronic states in solids plays a central role in a wide range of modern condensed-matter systems including graphene or topological insulators. However, experimentally accessing this information has proven to be challenging, especially when the bands are not well-isolated from one another. As reported in last week’s issue of Science (Science, 27 May 2016, DOI: 10.1126/science.aad5812), an international team of researchers around T. Li, Prof. I. Bloch and Dr. U. Schneider from the Ludwig-Maximilians-Universität Munich and the Max Planck Institute of Quantum Optics have devised a straightforward method to probe the band geometry using ultracold atoms in an optical lattice. Their method, which combines the controlled steering of atoms through the energy bands with atom interferometry, is an important step in the endeavor to investigate geometric and topological phenomena in synthetic band structures.


The researchers accelerated the entire lattice, which results in an inertial force in the frame of the lattice, similar to pulling on a carpet. The larger the force (2,3), the faster the atoms move in crystal momentum space, and the less important the effect of the band energies become. The effect of the band energy is negligible for the strongest forces (3). (F: force, d: distance between neighbouring lattice sites). T. Li, LMU & MPQ Munich


The researchers interfered three laser beams at 120-degree angles to form a graphene-like honeycomb lattice. The atoms are trapped in the honeycomb structure formed from by the valleys (dark blue) of the potential. T. Li, LMU & MPQ Munich

A wide array of fundamental phenomena in condensed matter physics, such as why some materials are insulators while others are metals, can be understood simply by examining the energies of the material’s constituent electrons. Indeed, band theory, which describes these electron energies, was one of the earliest triumphs of quantum mechanics and has driven much of the technological advances of our time, from the computer chips in our laptops to the liquid-crystal displays on our smartphones. We now know, however, that traditional band theory is incomplete.

Among the most surprising and fruitful developments in modern condensed matter physics was the realization that there is more than the energies—rather, the geometric structure of the bands also plays an important role. This geometric information is responsible for much of the exotic physics in newly discovered materials such as graphene or topological insulators and underlies an array of exciting technological possibilities from spintronics to topological quantum computing. It is, however, notoriously challenging to experimentally access.

Now, an international team of researchers, with experiments performed at the Ludwig-Maximilians-Universität Munich and the Max Planck Institute of Quantum Optics, has devised a straightforward method to probe the band geometry using ultracold atoms in an optical lattice, a synthetic crystal formed from standing waves of light. Their method relies on creating a system that can be described by a quantity known as the Wilson line.

Although originally formulated in the context of quantum chromodynamics, Wilson lines surprisingly also describe the evolution of degenerate quantum states, i.e., quantum states with the same energy. Applied to condensed matter systems, the elements of the Wilson line directly encode the geometric structure of the bands. Therefore, to access the band geometry, the researchers need only to access the Wilson line elements.

The problem, however, is that the bands of a solid are generally not degenerate. The researchers realized that there was a work-around: when moved fast enough in momentum space, the atoms no longer feel the effect of the energy bands and probe only the essential geometric information. In this regime, two bands with two different energies behave like two bands with the same energy (see Figure 1).

In their work, the researchers first cooled atoms to quantum degeneracy. The atoms were then placed into an optical lattice formed by laser beams (Figure 2) to realize a system that mimics the behavior of electrons in a solid, but without the added complexities of real materials. In addition to being exceptionally clean, optical lattices are highly tunable—different types of lattice structures can be created by changing the intensity or the polarization of the light. In their experiment, the researchers interfered three laser beams to form a graphene-like honeycomb lattice.

Although spread out over all lattice sites, the quantum degenerate atoms carry a well-defined momentum in the light crystal. The researchers then rapidly accelerated the atoms to a different momentum and measured the amount of excitations they created. When the acceleration is fast enough, such that the system is described by the Wilson line, this straightforward measurement reveals how the electronic wavefunction at the second momentum differs from the wavefunction at the first momentum. Repeating the same experiment at many different crystal momenta would yield a complete map of how the wavefunctions change over the entire momentum space of the artificial solid.

The researchers not only confirmed that it was possible to move the atoms such that the dynamics were described by two-band Wilson lines; they also revealed both the local, geometric properties and the global, topological structure of the bands. While the lowest two bands of the honeycomb lattice are known not to be topological, the results demonstrate that Wilson lines can indeed be experimentally used to probe and reveal the band geometry and topology in these novel synthetic settings.

Original publication:
Tracy Li, Lucia Duca, Martin Reitter, Fabian Grusdt, Eugene Demler, Manuel Endres, Monika Schleier-Smith, Immanuel Bloch, Ulrich Schneider
Bloch state tomography using Wilson lines
Science 352, 1094 (2016), 27 May 2016, DOI: 10.1126/science.aad5812

Image description: Figure 1:
The researchers accelerated the entire lattice, which results in an inertial force in the frame of the lattice, similar to pulling on a carpet. The larger the force (2,3), the faster the atoms move in crystal momentum space, and the less important the effect of the band energies become. The effect of the band energy is negligible for the strongest forces (3). (F: force, d: distance between neighbouring lattice sites).

Image description: Figure 2:
The researchers interfered three laser beams at 120-degree angles to form a graphene-like honeycomb lattice. The atoms are trapped in the honeycomb structure formed from by the valleys (dark blue) of the potential.

Contact:

Dr. Ulrich Schneider
LMU Munich, Faculty of Physics
Schellingstr. 4, 80799 Munich, Germany
University of Cambridge, Cambridge, UK
Phone: +49 (0)122 333 7239
E-mail: uws20@cam.ac.uk

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -138
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>