Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cockroach-inspired robot uses body streamlining to negotiate obstacles

23.06.2015

Researchers at University of California, Berkeley have taken inspiration from the cockroach to create a robot that can use its body shape to manoeuvre through a densely cluttered environment.

Fitted with the characteristic rounded shell of the discoid cockroach, the running robot can perform a roll manoeuvre to slip through gaps between grass-like vertical beam obstacles without the need for additional sensors or motors.


A discoid cockroach rolls its body to the side and quickly maneuvers through narrow gaps between densely cluttered, grass-like beam obstacles. With its unmodified cuboidal body, the VelociRoACH robot becomes stuck while trying to traverse beam obstacles, because it turns to the left or right as soon as its body contacts a beam. By adding a rounded, ellipsoidal, exoskeletal shell inspired from the cockroach, the robot rolls its body to the side and maneuvers through beam obstacles, without adding sensors or changing the open-loop control.

Courtesy of PolyPEDAL Lab, Biomimetic Millisystems Lab, and CiBER, UC Berkeley

It is hoped the robot can inspire the design of future terrestrial robots to use in a wide variety of scenarios, from monitoring the environment to search and rescue operations.

The first results of the robot's performance have been presented today, 23 June 2015, in IOP Publishing's journal Bioinspiration & Biomimetics.

Whilst many terrestrial robots have been developed with a view to perform a wide range of tasks by avoiding obstacles, few have been specifically designed to traverse obstacles.

Lead author of the study Chen Li, from the University of California, Berkeley, said: "The majority of robotics studies have been solving the problem of obstacles by avoiding them, which largely depends on using sensors to map out the environment and algorithms that plan a path to go around obstacles.

"However, when the terrain becomes densely cluttered, especially as gaps between obstacles become comparable or even smaller than robot size, this approach starts to run into problems as a clear path cannot be mapped."

In their study, the researchers used high-speed cameras to study the movement of discoid cockroaches through an artificial obstacle course containing grass-like vertical beams with small spacing. Living on the floor of tropical rainforests, this specific type of cockroach frequently encounters a wide variety of cluttered obstacles, such as blades of grass, shrubs, leaf litter, tree trunks, and fungi.

The cockroaches were fitted with three different artificial shells to see how their movement was affected by body shape when moving through the vertical beams. The shapes of the three shells were: an oval cone with a similar shape to the cockroaches' body; a flat oval; and a flat rectangle.

When the cockroaches were unmodified, the researchers found that, although they sometimes pushed through the beams or climbed over them, they most frequently used a fast and effective roll manoeuvre to slip through the obstacles. In these instances, the cockroaches rolled their body so that their thin sides could fit through the gaps and their legs could push off the beams to help them manoeuvre through the obstacles.

As their body became less rounded by wearing the three artificial shells, it became harder for the cockroaches to move through the obstacles, because they were less able to perform the fast and effective roll manoeuvre.

After examining the cockroaches, the researchers then tested a small, rectangular, six-legged robot and observed whether it was able to traverse a similar obstacle course.

The researchers found that with a rectangular body the robot could rarely traverse the grass-like beams, and frequently collided with the obstacles and became stuck between them.

When the robot was fitted with the cockroach-inspired rounded shell, it was much more likely to successfully move through the obstacle course using a similar roll manoeuvre to the cockroaches. This adaptive behaviour came about with no change to the robot programming, showing that the intelligent behaviour came from the shell.

"We showed that our robot can traverse grass-like beam obstacles at high probability, without adding any sensory feedback or changes in motor control, thanks to the thin, rounded shell that allows the robot body to roll to reduce terrain resistance." Li continued. "This is a terrestrial analogy of the streamlined shapes that reduce drag on birds, fish, airplanes and submarines as they move in fluids. We call this 'terradynamic' streamlining."

"There may be other shapes besides the thin, rounded one that are good for other purposes, such as climbing up and over obstacles of other types. Our next steps will be to study a diversity of terrain and animal shapes to discover more terradynamic shapes, and even morphing shapes. These new concepts will enable terrestrial robots to go through various cluttered environments with minimal sensors and simple controls."

###

From 23 June 2015, this paper can be downloaded from http://iopscience.iop.org/1748-3190/10/4/046003.

Notes to editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact Senior Press Officer, Steve Pritchard: Tel: 0117 930 1032 E-mail: steve.pritchard@iop.org For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.

Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered three-dimensional terrain

3. The published version of the paper 'Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain' (Bioinspiration Biomimetics 4 046003) will be freely available online from 23 June 2015. It will be available at http://iopscience.iop.org/1748-3190/10/4/046003.

Bioinspiration & Biomimetics

4. Bioinspiration & Biomimetics publishes research that applies principles abstracted from natural systems to engineering and technological design and applications.

IOP Publishing

5. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

Access to Research

6. Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk.

The Institute of Physics

7. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.

Visit us at http://www.iop.org or follow us on Twitter @physicsnews.

Media Contact

Steve Pritchard
steve.pritchard@iop.org
44-117-930-1032

 @IOPPublishing

http://ioppublishing.org/ 

Steve Pritchard | EurekAlert!

Further reports about: Bioinspiration Biomimetics IOP artificial cockroaches physics terrain terrestrial

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>