Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cockroach-inspired robot uses body streamlining to negotiate obstacles

23.06.2015

Researchers at University of California, Berkeley have taken inspiration from the cockroach to create a robot that can use its body shape to manoeuvre through a densely cluttered environment.

Fitted with the characteristic rounded shell of the discoid cockroach, the running robot can perform a roll manoeuvre to slip through gaps between grass-like vertical beam obstacles without the need for additional sensors or motors.


A discoid cockroach rolls its body to the side and quickly maneuvers through narrow gaps between densely cluttered, grass-like beam obstacles. With its unmodified cuboidal body, the VelociRoACH robot becomes stuck while trying to traverse beam obstacles, because it turns to the left or right as soon as its body contacts a beam. By adding a rounded, ellipsoidal, exoskeletal shell inspired from the cockroach, the robot rolls its body to the side and maneuvers through beam obstacles, without adding sensors or changing the open-loop control.

Courtesy of PolyPEDAL Lab, Biomimetic Millisystems Lab, and CiBER, UC Berkeley

It is hoped the robot can inspire the design of future terrestrial robots to use in a wide variety of scenarios, from monitoring the environment to search and rescue operations.

The first results of the robot's performance have been presented today, 23 June 2015, in IOP Publishing's journal Bioinspiration & Biomimetics.

Whilst many terrestrial robots have been developed with a view to perform a wide range of tasks by avoiding obstacles, few have been specifically designed to traverse obstacles.

Lead author of the study Chen Li, from the University of California, Berkeley, said: "The majority of robotics studies have been solving the problem of obstacles by avoiding them, which largely depends on using sensors to map out the environment and algorithms that plan a path to go around obstacles.

"However, when the terrain becomes densely cluttered, especially as gaps between obstacles become comparable or even smaller than robot size, this approach starts to run into problems as a clear path cannot be mapped."

In their study, the researchers used high-speed cameras to study the movement of discoid cockroaches through an artificial obstacle course containing grass-like vertical beams with small spacing. Living on the floor of tropical rainforests, this specific type of cockroach frequently encounters a wide variety of cluttered obstacles, such as blades of grass, shrubs, leaf litter, tree trunks, and fungi.

The cockroaches were fitted with three different artificial shells to see how their movement was affected by body shape when moving through the vertical beams. The shapes of the three shells were: an oval cone with a similar shape to the cockroaches' body; a flat oval; and a flat rectangle.

When the cockroaches were unmodified, the researchers found that, although they sometimes pushed through the beams or climbed over them, they most frequently used a fast and effective roll manoeuvre to slip through the obstacles. In these instances, the cockroaches rolled their body so that their thin sides could fit through the gaps and their legs could push off the beams to help them manoeuvre through the obstacles.

As their body became less rounded by wearing the three artificial shells, it became harder for the cockroaches to move through the obstacles, because they were less able to perform the fast and effective roll manoeuvre.

After examining the cockroaches, the researchers then tested a small, rectangular, six-legged robot and observed whether it was able to traverse a similar obstacle course.

The researchers found that with a rectangular body the robot could rarely traverse the grass-like beams, and frequently collided with the obstacles and became stuck between them.

When the robot was fitted with the cockroach-inspired rounded shell, it was much more likely to successfully move through the obstacle course using a similar roll manoeuvre to the cockroaches. This adaptive behaviour came about with no change to the robot programming, showing that the intelligent behaviour came from the shell.

"We showed that our robot can traverse grass-like beam obstacles at high probability, without adding any sensory feedback or changes in motor control, thanks to the thin, rounded shell that allows the robot body to roll to reduce terrain resistance." Li continued. "This is a terrestrial analogy of the streamlined shapes that reduce drag on birds, fish, airplanes and submarines as they move in fluids. We call this 'terradynamic' streamlining."

"There may be other shapes besides the thin, rounded one that are good for other purposes, such as climbing up and over obstacles of other types. Our next steps will be to study a diversity of terrain and animal shapes to discover more terradynamic shapes, and even morphing shapes. These new concepts will enable terrestrial robots to go through various cluttered environments with minimal sensors and simple controls."

###

From 23 June 2015, this paper can be downloaded from http://iopscience.iop.org/1748-3190/10/4/046003.

Notes to editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact Senior Press Officer, Steve Pritchard: Tel: 0117 930 1032 E-mail: steve.pritchard@iop.org For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.

Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered three-dimensional terrain

3. The published version of the paper 'Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain' (Bioinspiration Biomimetics 4 046003) will be freely available online from 23 June 2015. It will be available at http://iopscience.iop.org/1748-3190/10/4/046003.

Bioinspiration & Biomimetics

4. Bioinspiration & Biomimetics publishes research that applies principles abstracted from natural systems to engineering and technological design and applications.

IOP Publishing

5. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

Access to Research

6. Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk.

The Institute of Physics

7. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.

Visit us at http://www.iop.org or follow us on Twitter @physicsnews.

Media Contact

Steve Pritchard
steve.pritchard@iop.org
44-117-930-1032

 @IOPPublishing

http://ioppublishing.org/ 

Steve Pritchard | EurekAlert!

Further reports about: Bioinspiration Biomimetics IOP artificial cockroaches physics terrain terrestrial

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>