Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate cycles may explain how running water carved Mars' surface features

02.12.2016

Dramatic climate cycles on early Mars, triggered by buildup of greenhouse gases, may be the key to understanding how liquid water left its mark on the planet's surface, according to a team of planetary scientists.

Scientists have long debated how deep canyons and extensive valley networks -- like the kinds carved by running water over millions of years on Earth -- could form on Mars some 3.8 billion years ago, a time many believe the planet was frozen.


Gale Crater on surface of Mars was once filled with liquid water for 10,000 to 10 million years, according to findings from the Mars Science Laboratory (MLS). A new study from Penn State scientists suggests dramatic climate cycles may have produced warm periods long enough to thaw the planet and create the water features on the surface today. Topographic evidence for lakes in Gale Crater, abstract, 44th Lunar and Planetary Science Conference (2013).

Credit: William Dietrich

The researchers suggest a glacier-covered early Mars could have experienced long warm periods, lasting up to 10 million years at a time, caused by a thick atmosphere of carbon dioxide and hydrogen.

The team, which published its findings today (Dec. 1) in the journal Earth and Planetary Science Letters, found the warming cycles would have lasted long enough, and produced enough water, to create the features.

With the cycling hypothesis, you get these long periods of warmth that give you sufficient time to form all the different Martian valley networks," said Natasha Batalha, graduate student, astronomy and astrophysics, Penn State.

Previous studies suggested asteroid impacts might have warmed the planet, creating steam atmospheres that led to rain. But those warm periods would have much shorter durations and struggle to produce enough water, researchers said.

"We think Mars had to be warm for millions to tens of millions of years, and the impact hypothesis can keep it warm for thousands of years," said Jim Kasting, Evan Pugh Professor of geosciences, Penn State, and paper co-author. "In terms of water, we need millions of meters of rainfall, and they (previous studies) can get hundreds of meters."

Kasting said valleys on the Martian surface are similar in width to the Colorado River Canyon. Scientists estimate it took 16 million years for the Colorado River, swollen seasonally as the snow melts in the Rocky Mountains, to carve the nearby Grand Canyon.

Using climate models, the team showed warming periods -- caused when greenhouse gases reached a certain tipping point -- lasted millions of years on Mars. With the right choice of parameters, these warm periods can last up to 10 million years.

According to researchers, greenhouse gases accumulated in the atmosphere gradually, belched by volcanic eruptions, released by cooling magma on the surface or seeping up from the planet's crust.

Rain naturally removes some of this from the atmosphere when it falls, storing some carbon in the ground through a process called chemical weathering. But because early Mars was cold, it rained less and this process couldn't keep up, the researchers said.

"Mars is in this precarious position where it's at the outer edge of the habitable zone," Batalha said. "It's receiving less solar flux, so you start at a glaciated state. There is volcanic outgassing, but because you are colder, you don't get the same deposition of carbon back into the planet's surface. Instead, you get this atmospheric buildup and your planet slowly starts to rise in temperature."

As the planet warmed, chemical weathering would eventually happen faster than volcanoes could return gases into the atmosphere, and the planet would begin to cool, ushering in another ice age.

For the theory to work, scientists said further study is needed to determine whether enough carbon dioxide and hydrogen could have been produced on the planet.

"We would be well off if early Mars had plate tectonics just like Earth has today," Kasting said. "Then it works. But that's a big debate. A lot of people don't think Mars ever had it."

Batalha said high amounts of carbon dioxide in the atmosphere would have led to very acidic rain, which would have dissolved carbonate rocks at the surface and deposited them in the subsurface.

"So if the next Mars mission was able to dig down deeper, you might be able to uncover these different carbonates," she said. "That would be a sort of smoking gun for the carbon dioxide."

###

Also working on this project were Ravi Kumar Kopparapu, assistant research scientist, University of Maryland and NASA Goddard Space Flight Center, and Jacob Haqq-Misra, NASA Astrobiology Institute's Virtual Planetary Laboratory and Blue Marble Space Institute of Science, Seattle.

NASA and the National Science Foundation through a graduate fellowship funded this research.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

Further reports about: Atmosphere Earth Mars NASA Planetary carbon dioxide dioxide greenhouse gases volcanic

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>