Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Control in Termite Mounds

25.11.2014

Periodic fluctuations in outside temperature drive ventilation in termite mounds because of the design of the design of the mounds, according to researchers at Harvard and MIT

When they make their way into homes, some species of termites can be destructive pests. Their fungus-harvesting relatives in Africa and Asia, however, are known for their construction prowess, collectively building elaborate structures. The striking mounds built by some species of termites are thought to help regulate humidity and respiratory gas levels inside their subterranean nests, but determining how they do so has proven difficult to study.


Credit: Hunter King and Sam Ocko

A mound of the termite species Odontotermes obesus in Southern India. Respiratory flows inside are driven by daily oscillations in ambient temperature.

Now, researchers from Harvard University and the Massachusetts Institute of Technology have found that fluctuations in outside temperature over the course of the day create convection currents within the mounds that ventilate the termites’ living space. They will present their results at the 67th annual meeting of the American Physical Society (APS) Division of Fluid Dynamics, held November 23-25 in San Francisco.

Termite mounds are built from compacted soil and contain a network of tunnels that transport gases from the nest to the mound surface, where they diffuse through many tiny pores that also allow outside gasses to enter the mound. Because the individual pores are so small, however, the mound resists large-scale pressure-driven airflow such as that induced by wind—the ventilation must instead be driven by some other factor.

... more about:
»AIP »APS »Climate »Fluid »airflow »respiration »species »temperature »termite

To determine what this factor could be, the researchers studied Odontotermes obesus, a species of mound-building termite found in southern India. They measured airflow speed and direction inside both living and dead mounds, as well as carbon dioxide concentration. Carbon dioxide levels rose during the day and then, as the temperatures dropped at night, fell sharply. Air velocity also fluctuated in accordance with these daily temperature cycles.

The researchers linked this data to the termite mound’s structure: a central chimney flanked by smaller buttresses referred to as flutes. They proposed that exposed flutes respond quickly to changing temperatures throughout the day, while the temperature in the internal chimney remains relatively constant.

“When the flutes are warm and the center is cool, air expands and rises in the flutes, contracts and sinks in the chimney, and vice versa,” explained Hunter King, a researcher from Harvard University’s School of Engineering and Applied Sciences. “The result is a twice-daily inverting convection cell within the mound that brings stale air from the nest to the surfaces of the mound.”

Their results provide an answer to a longstanding biological mystery. “The termite mound, a striking example of decentralized swarm construction, represents a surprisingly clever solution--an external lung for collective respiration, which relies on temperature fluctuations rather than constant heating or direct external forcing,” said King.

King and his collaborators, Sam Ocko and L. Mahadevan, plan to carry out similar tests on the mounds of other termite species to determine whether the mechanism is generalizable. They also hope that their discovery could provide inspiration for human-engineered systems. “Certain architects may find in these termites applications for passive human architecture,” said King.

The presentation, "Diurnal respiration of a termite mound," is at 9:44 a.m. PT on Tuesday, November 25, 2014 in the Moscone West Convention Center, Room 3012. ABSTRACT: http://meetings.aps.org/Meeting/DFD14/Session/M7.9"


MEETING INFORMATION
The 67th Annual Division of Fluid Dynamics Meeting will be held at Moscone West Convention Center in San Francisco, Calif. from Nov. 23-25, 2014. More meeting information: http://apsdfd2014.stanford.edu

REGISTERING AS PRESS
Any journalist, full-time or freelance, may attend the conference free of charge. Please email: jbardi@aip.org anddfdmedia@aps.org and include "DFD Press Registration" in the subject line.

ONSIGHT AND ONLINE PRESS ROOMS
Workspace will be provided on-site during the meeting. The week before the meeting, news, videos and graphics will be made available on the Virtual Press Room: http://www.aps.org/units/dfd/pressroom

LIVE MEDIA EVENT
A press briefing featuring a selection of newsworthy research talks will be streamed live from the conference at 1:00pm PST on Monday, November 24 in room Foothill F of the San Francisco Marriott Marquis. For more information, emailjbardi@aip.org

ABOUT THE APS DIVISION OF FLUID DYNAMICS
The Division of Fluid Dynamics (DFD) of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website: http://www.aps.org/units/dfd/index.cfm 

Contact Information
Jason Bardi
Director, Media Relations
jbardi@aip.org
Phone: 301-209-3091
Mobile: 240-535-4954

Jason Bardi | newswise

Further reports about: AIP APS Climate Fluid airflow respiration species temperature termite

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>