Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Control in Termite Mounds

25.11.2014

Periodic fluctuations in outside temperature drive ventilation in termite mounds because of the design of the design of the mounds, according to researchers at Harvard and MIT

When they make their way into homes, some species of termites can be destructive pests. Their fungus-harvesting relatives in Africa and Asia, however, are known for their construction prowess, collectively building elaborate structures. The striking mounds built by some species of termites are thought to help regulate humidity and respiratory gas levels inside their subterranean nests, but determining how they do so has proven difficult to study.


Credit: Hunter King and Sam Ocko

A mound of the termite species Odontotermes obesus in Southern India. Respiratory flows inside are driven by daily oscillations in ambient temperature.

Now, researchers from Harvard University and the Massachusetts Institute of Technology have found that fluctuations in outside temperature over the course of the day create convection currents within the mounds that ventilate the termites’ living space. They will present their results at the 67th annual meeting of the American Physical Society (APS) Division of Fluid Dynamics, held November 23-25 in San Francisco.

Termite mounds are built from compacted soil and contain a network of tunnels that transport gases from the nest to the mound surface, where they diffuse through many tiny pores that also allow outside gasses to enter the mound. Because the individual pores are so small, however, the mound resists large-scale pressure-driven airflow such as that induced by wind—the ventilation must instead be driven by some other factor.

... more about:
»AIP »APS »Climate »Fluid »airflow »respiration »species »temperature »termite

To determine what this factor could be, the researchers studied Odontotermes obesus, a species of mound-building termite found in southern India. They measured airflow speed and direction inside both living and dead mounds, as well as carbon dioxide concentration. Carbon dioxide levels rose during the day and then, as the temperatures dropped at night, fell sharply. Air velocity also fluctuated in accordance with these daily temperature cycles.

The researchers linked this data to the termite mound’s structure: a central chimney flanked by smaller buttresses referred to as flutes. They proposed that exposed flutes respond quickly to changing temperatures throughout the day, while the temperature in the internal chimney remains relatively constant.

“When the flutes are warm and the center is cool, air expands and rises in the flutes, contracts and sinks in the chimney, and vice versa,” explained Hunter King, a researcher from Harvard University’s School of Engineering and Applied Sciences. “The result is a twice-daily inverting convection cell within the mound that brings stale air from the nest to the surfaces of the mound.”

Their results provide an answer to a longstanding biological mystery. “The termite mound, a striking example of decentralized swarm construction, represents a surprisingly clever solution--an external lung for collective respiration, which relies on temperature fluctuations rather than constant heating or direct external forcing,” said King.

King and his collaborators, Sam Ocko and L. Mahadevan, plan to carry out similar tests on the mounds of other termite species to determine whether the mechanism is generalizable. They also hope that their discovery could provide inspiration for human-engineered systems. “Certain architects may find in these termites applications for passive human architecture,” said King.

The presentation, "Diurnal respiration of a termite mound," is at 9:44 a.m. PT on Tuesday, November 25, 2014 in the Moscone West Convention Center, Room 3012. ABSTRACT: http://meetings.aps.org/Meeting/DFD14/Session/M7.9"


MEETING INFORMATION
The 67th Annual Division of Fluid Dynamics Meeting will be held at Moscone West Convention Center in San Francisco, Calif. from Nov. 23-25, 2014. More meeting information: http://apsdfd2014.stanford.edu

REGISTERING AS PRESS
Any journalist, full-time or freelance, may attend the conference free of charge. Please email: jbardi@aip.org anddfdmedia@aps.org and include "DFD Press Registration" in the subject line.

ONSIGHT AND ONLINE PRESS ROOMS
Workspace will be provided on-site during the meeting. The week before the meeting, news, videos and graphics will be made available on the Virtual Press Room: http://www.aps.org/units/dfd/pressroom

LIVE MEDIA EVENT
A press briefing featuring a selection of newsworthy research talks will be streamed live from the conference at 1:00pm PST on Monday, November 24 in room Foothill F of the San Francisco Marriott Marquis. For more information, emailjbardi@aip.org

ABOUT THE APS DIVISION OF FLUID DYNAMICS
The Division of Fluid Dynamics (DFD) of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website: http://www.aps.org/units/dfd/index.cfm 

Contact Information
Jason Bardi
Director, Media Relations
jbardi@aip.org
Phone: 301-209-3091
Mobile: 240-535-4954

Jason Bardi | newswise

Further reports about: AIP APS Climate Fluid airflow respiration species temperature termite

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>