Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clamping down on causality by probing laser cavities

30.08.2017

By monitoring the optical response of an externally probed laser cavity before and after gain clamping, a University of Central Florida and Yale collaboration reveals the underlying mechanisms driving the cavity's responses

Since the realization of the first laser cavity countless questions have been asked for which laser light has provided the answer. Numerous questions have also been posed in an effort to improve on our abilities to produce lasers with various performance specifications and wavelengths. A question that was not asked until recently is - what happens if you shine a laser beam through another laser cavity? It may not seem a practical question to ask experimentally, but after studying how externally incident light interacts with an active laser cavity in quantitative detail, the answer turns out to offer devices with new, seemingly paradoxical optical capabilities.


a) A lasing cavity is probed with an external signal. (b) Measured reflection from and transmission through the cavity as a function of gain, showing an increase until lases commences followed abruptly by clamping. The device becomes a transparent perfect mirror a pre-lasing gain value: reflection in 100 percent but the transmission is finite.

Credit: Ayman Abouraddy, University of Central Florida's CREOL

Now, an even closer look at these capabilities has provided a unique window into fundamental physics and optical behaviors. The collaboration researching these laser cavity interactions, from the University of Central Florida's College of Optics and Photonics (CREOL) and Yale University, developed a perfectly reflecting one-way mirror, offering truly concealed observation windows; something passive materials can only approximate.

Probing deeper into the mechanism of this paradoxical behavior, they have also now revealed fundamental aspects of what governs the optical responses and a direct view of causality's role. Ayman Abouraddy, University of Central Florida's CREOL - Multi-Material Optical Fiber Devices group, will present their group's findings at Frontiers in Optics + Laser Science APS/DLS (FIO + LS), held 17-21 September 2017 in Washington, DC.

... more about:
»APS »DLS »FiO »Laser »OSA »energy flow »fundamental physics »mirror »optics

"A cavity is one of the fundamental components we have in optics - it's basically two mirrors in front of each other," Abouraddy said. "We've been looking at what would happen if I send a beam of light through such a cavity with gain inside as I gradually crank up the amount of gain. We're studying what happens to light that is sent through a cavity if the cavity is active."

By changing the amount of gain, the cavity's optical response to a separate incident laser (of a different wavelength) also changes. This active component measurably changes the reflection and transmission, depending the active gain level of the cavity.

"As we increase the amount of gain, the cavity will lase on its own. For our research today, we are more interested in what happens to a signal that I am sending through that cavity," Abouraddy said.

When the cavity does begin to lase, however, a fascinating and important shift in the behavior appears. At that point, both reflection and transmission amplification top out, although the power of the probing signal remains linearly related to the output. This also demonstrates the effect is not near saturation.

"The cavity is not allowed to amplify beyond a certain limit after you hit lasing," said Abouraddy. This effect, known as gain clamping, is part-and-parcel to stable functioning of the laser. The similar response to externally incident light, however, which lends to a truly transparent perfect mirror, is not only novel but offers new insight into fundamental physics.

The team's experimental demonstration used a fiber optic cavity in which they separated the forward and backwards travelling light. When they closely investigated the dynamics of directional energy flow in the cavity as that gain was increased, what they found related to fundamental physical principles.

Abouraddy explains that at sufficient gain, as light makes trips in the cavity in both directions, a null in the energy flow where the two directions cancel gradually creeps deeper into the cavity. The behavior of this null links a laser's fundamental threshold to a direct demonstration of causality's limits.

"At the lasing threshold, that null reaches midway in the cavity. It turns out increasing the gain further, that null refuses to move ahead, and it's pinned to the middle of the cavity," he said. "That is why when we increase the gain, we don't see further amplification. Now the beauty of this whole thing is it turns out that it is connected to causality. If that null were to move further beyond the midway of the cavity, which would be a violation of causality. In this case, one would get an output from it before you sent an input."

###

About the Presentation

The presentation entitled "Gain-Clamping for an Externally-Incident Field Passing through a Laser Cavity," by Ali Kazemi Jahromi, will take place from on Tuesday, 19 September at the Washington Hilton, Washington DC, USA.

Media Registration

A media room for credentialed media and analysts will be located on-site. Media interested in attending the event should register on the FiO + LS website: Media Center.

About FiO + LS

Frontiers in Optics is The Optical Society's (OSA) Annual Meeting and held together with Laser Science, a meeting sponsored by the American Physical Society's Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, in-demand invited speakers and a variety of special events spanning a broad range of topics in optics and photonics--the science of light--across the disciplines of physics, biology and chemistry. The exhibit floor will feature leading optics companies, technology products and programs. More information at: FrontiersinOptics.org.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:
Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

http://www.osa.org 

Joshua Miller | EurekAlert!

Further reports about: APS DLS FiO Laser OSA energy flow fundamental physics mirror optics

More articles from Physics and Astronomy:

nachricht Moon's crust underwent resurfacing after forming from magma ocean
22.11.2017 | University of Texas at Austin

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>