Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choreographing light

13.11.2012
EPFL scientists have developed an algorithm to control light patterns called "caustics" and organize them into coherent images

It's a simple, transparent acrylic plate – nothing embedded within it and nothing printed on its surface. Place it at a certain angle between a white wall and a light source, and a clear, coherent image appears of the face of Alan Turing, the famous British mathematician and father of modern computer science.


Researchers at EPFL found a way to control "caustics", patterns that appear when light hits a water surface or a transparent material. Thanks to an algorithm, they can shape a transparent object so that it reflects a coherent image.

Credit: (c) Alain Herzog

There's no magic here; the only thing at work is the relief on the plaque's surface and a natural optical phenomenon known as a "caustic," which researchers in EPFL's Computer Graphics and Geometry Laboratory have succeeded in bending to their will. Their research was presented recently at the Advances in Architectural Geometry Conference in Paris.

"With the technique that we've developed, we can compose any image we want, from a simple form such as a star to complex representations such as faces or landscapes," explains EPFL professor Mark Pauly, head of the laboratory, who conducted the study with four other scientists*.

This "caustic" effect is well known and easy to observe; a bit of sunlight shining on a pool of water produces patterns that dance on the surrounding tiles or walls. These undulating lines, apparently random, are generated by light that hits the moving surface of a pool or puddle. This effect, which is very mobile and dynamic in liquid, produces static patterns with solid transparent materials such as glass or transparent acrylic (better known as Plexiglass).

Deviated trajectories

Scientifically, this phenomenon can be explained by light refraction. When light rays hit a transparent surface, they continue their trajectory but are bent as a function of the surface geometry and optical properties of the material. The light passing through is thus not uniformly distributed. It gets concentrated in certain points, forming some zones that are more intense and others that are more shaded.

Pauly and his colleagues studied the principles of this distribution, and were able to identify the curves and undulations they would need to give to the surface in order to direct the beams of light to a desired area. They then developed an algorithm to calculate the trajectories very precisely and thus form a specific image.

One of the most interesting and eagerly awaited applications of this method is in architecture. It could be applied to display cases, windows, fountains, and ornamentations on museums and monuments. In design it could be used for decorating glasses, vases, carafes, jewelry and many other objects. It has considerable potential in other, more technical applications as well, such as automobile headlights and projectors.

See the Youtube video: http://www.youtube.com/watch?v=0NXNAIqU8KM

*Thomas Kiser (EPFL), Michael Eigensatz (Evolute), Minh Man Nguyen (WAO) and Philippe Bompas.

Mark Pauly | EurekAlert!
Further information:
http://www.epfl.ch
http://www.youtube.com/watch?v=0NXNAIqU8KM

Further reports about: Choreographing Choreographing light EPFL Source algorithm coherent images geometry

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>