Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cesium atoms shaken, not stirred, to create elusive excitation in superfluid

06.02.2015

Scientists discovered in 1937 that liquid helium-4, when chilled to extremely low temperatures, became a superfluid that could leak through glass, overflow its containers, or eternally gush like a fountain.

Future Nobel laureate Lev Landau came along in 1941, predicting that superfluid helium-4 should contain an exotic, particle-like excitation called a roton. But scientists, including Landau, Nobel laureate Richard Feynman and Wolf Prize recipient Philippe Nozières have debated what structure the roton would take ever since.


University of Chicago scientists can create an exotic, particle-like excitation called a roton in superfluids with the tabletop apparatus pictured here. Posing from left are graduate students Li-Chung Ha and Logan Clark, and physics Professor Cheng Chin.

Credit: Rob Kozloff, University of Chicago

"Even nowadays, after seven decades, it remains an issue of interest and controversy," said Cheng Chin, professor in physics at the University of Chicago. But in a new paper published Feb. 3, 2015, in Physical Review Letters, Chin and four associates describe how they can create roton structure in a new system: atomic superfluid of cesium-133 in the laboratory.

Scientists who specialize in superfluids have found it difficult to study rotons. Chin's team has pioneered a system that will make it much easier to reveal the long-cloaked mysteries of the roton.

The UChicago researchers generated artificial rotons using what they call the shaken lattice technique. With this technique, the physicists created a superfluid in a one-foot cylindrical chamber cooled to a temperature of approximately 15 nano-Kelvin, just a tiny fraction of a degree above absolute zero (minus 459.6 degrees Fahrenheit).

During the experiment, 30,000 cesium atoms became trapped in a crossing pattern of infrared laser beams. This optical lattice holds the atoms fast, like eggs in a crate, while gently shaking them.

Superfluidity in 10 seconds

"We need about 10 seconds to reach that temperature to prepare a superfluid as our first step," Chin said. "It is a brand new idea that shaking the optical lattice leads to the emergence of the rotons."

The superfluid persists for several seconds, during which time the physicists create the roton structure and image it to see how the structure influences the superfluid's properties.

Competing research teams at the University of Science and Technology in Shanghai, China, and at Washington State University also succeeded in creating roton structure using a different technique within few weeks after the Chicago group announced the result last summer. Those teams used additional laser beams to excite the atoms in the proper way.

"We approached the challenge to create rotons based on a new technology that we recently developed," said Li-Chung Ha, a graduate student in physics at UChicago. The lead author of the Physical Review Letters paper, Ha played a key role in developing the shaken lattice and in-situ imaging techniques used to collect the roton data.

Chin's research group developed the lattice shaking technique over a period of years. In 2013, Ha, Chin and UChicago postdoctoral scholar Colin V. Parker published a paper in Nature Physics showing that a variation of that technique could reveal interesting magnetic features in ultracold atoms. Later, they realized that they could use the same technique to create roton structure.

Engineering roton excitation

"With this technique, we can engineer an excitation spectrum of the atoms," Ha said. This feature, a hallmark of superfluid helium, is one of three pieces of evidence reported in the paper indicating that Ha and his associates had successfully created roton structure.

The other two lines of evidence include the measurements of roton energy confirming that its manifestation depends on the atomic interaction. The UChicago team also observed how roton excitations affect the superfluidity by dragging a laser speckle pattern across the superfluid.

"Experimentally, we see that a superfluid will become weaker in the presence of roton structure," Chin said. A superfluid can flow with no friction up to a maximum speed, called "superfluid critical velocity." Rotons suppress the critical velocity, which is the opposite of the desired goal to improve the robustness of superfluidity.

How robust can superfluidity be?

Researchers have proposed many ways to increase the robustness of superconductors, and atomic superfluids offer experimental means to test these ideas, Chin said.

"Superconductors can transfer energy without dissipation, that is, without energy loss, so a robust superconducting material can find widespread applications everywhere," he said. At the moment, power companies still use copper wire for energy transmission, which carries with it energy losses ranging from 30 to 40 percent from power plant to home or office.

Switching to superconductivity is currently impractical because superconducting material is expensive, and it works only at extremely low temperatures. More importantly, Chin noted, "a single superconducting wire can only carry a limited amount of energy."

"Our experiments provide a new platform to study excitations of a superfluid. They can help us better identify the key issues that limit the robustness of superconductivity," he said.

Media Contact

Steve Koppes
skoppes@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Steve Koppes | EurekAlert!

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>