Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cesium atoms shaken, not stirred, to create elusive excitation in superfluid

06.02.2015

Scientists discovered in 1937 that liquid helium-4, when chilled to extremely low temperatures, became a superfluid that could leak through glass, overflow its containers, or eternally gush like a fountain.

Future Nobel laureate Lev Landau came along in 1941, predicting that superfluid helium-4 should contain an exotic, particle-like excitation called a roton. But scientists, including Landau, Nobel laureate Richard Feynman and Wolf Prize recipient Philippe Nozières have debated what structure the roton would take ever since.


University of Chicago scientists can create an exotic, particle-like excitation called a roton in superfluids with the tabletop apparatus pictured here. Posing from left are graduate students Li-Chung Ha and Logan Clark, and physics Professor Cheng Chin.

Credit: Rob Kozloff, University of Chicago

"Even nowadays, after seven decades, it remains an issue of interest and controversy," said Cheng Chin, professor in physics at the University of Chicago. But in a new paper published Feb. 3, 2015, in Physical Review Letters, Chin and four associates describe how they can create roton structure in a new system: atomic superfluid of cesium-133 in the laboratory.

Scientists who specialize in superfluids have found it difficult to study rotons. Chin's team has pioneered a system that will make it much easier to reveal the long-cloaked mysteries of the roton.

The UChicago researchers generated artificial rotons using what they call the shaken lattice technique. With this technique, the physicists created a superfluid in a one-foot cylindrical chamber cooled to a temperature of approximately 15 nano-Kelvin, just a tiny fraction of a degree above absolute zero (minus 459.6 degrees Fahrenheit).

During the experiment, 30,000 cesium atoms became trapped in a crossing pattern of infrared laser beams. This optical lattice holds the atoms fast, like eggs in a crate, while gently shaking them.

Superfluidity in 10 seconds

"We need about 10 seconds to reach that temperature to prepare a superfluid as our first step," Chin said. "It is a brand new idea that shaking the optical lattice leads to the emergence of the rotons."

The superfluid persists for several seconds, during which time the physicists create the roton structure and image it to see how the structure influences the superfluid's properties.

Competing research teams at the University of Science and Technology in Shanghai, China, and at Washington State University also succeeded in creating roton structure using a different technique within few weeks after the Chicago group announced the result last summer. Those teams used additional laser beams to excite the atoms in the proper way.

"We approached the challenge to create rotons based on a new technology that we recently developed," said Li-Chung Ha, a graduate student in physics at UChicago. The lead author of the Physical Review Letters paper, Ha played a key role in developing the shaken lattice and in-situ imaging techniques used to collect the roton data.

Chin's research group developed the lattice shaking technique over a period of years. In 2013, Ha, Chin and UChicago postdoctoral scholar Colin V. Parker published a paper in Nature Physics showing that a variation of that technique could reveal interesting magnetic features in ultracold atoms. Later, they realized that they could use the same technique to create roton structure.

Engineering roton excitation

"With this technique, we can engineer an excitation spectrum of the atoms," Ha said. This feature, a hallmark of superfluid helium, is one of three pieces of evidence reported in the paper indicating that Ha and his associates had successfully created roton structure.

The other two lines of evidence include the measurements of roton energy confirming that its manifestation depends on the atomic interaction. The UChicago team also observed how roton excitations affect the superfluidity by dragging a laser speckle pattern across the superfluid.

"Experimentally, we see that a superfluid will become weaker in the presence of roton structure," Chin said. A superfluid can flow with no friction up to a maximum speed, called "superfluid critical velocity." Rotons suppress the critical velocity, which is the opposite of the desired goal to improve the robustness of superfluidity.

How robust can superfluidity be?

Researchers have proposed many ways to increase the robustness of superconductors, and atomic superfluids offer experimental means to test these ideas, Chin said.

"Superconductors can transfer energy without dissipation, that is, without energy loss, so a robust superconducting material can find widespread applications everywhere," he said. At the moment, power companies still use copper wire for energy transmission, which carries with it energy losses ranging from 30 to 40 percent from power plant to home or office.

Switching to superconductivity is currently impractical because superconducting material is expensive, and it works only at extremely low temperatures. More importantly, Chin noted, "a single superconducting wire can only carry a limited amount of energy."

"Our experiments provide a new platform to study excitations of a superfluid. They can help us better identify the key issues that limit the robustness of superconductivity," he said.

Media Contact

Steve Koppes
skoppes@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Steve Koppes | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>