Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BL Lacertae - the hottest cosmic hearth


The orbiting radiotelescope Spektr-R of the RadioAstron space mission, together with the Effelsberg 100-meter antenna and another 14 ground-based radio telescopes around the globe, observed microwave radiation from the vicinity of the black hole in the active galactic nucleus known as BL Lacertae in a distance of 900 million light years.

Simultaneously recorded signals from all participating radio telescopes were combined at the special correlator facility operated at the MPIfR in Bonn, Germany, effectively providing a telescope with an equivalent size of eight times the Earth’s diameter and yielding the highest resolution image obtained in Astronomy so far.

RadioAstron observation of BL Lacertae in comparison the Oort cloud of the solar system and the nearest star, Alpha Centauri, seen from a distance of 900 million light years.

MPIfR/A. Lobanov

Radio emission from BL Lacertae imaged with RadioAstron at 1.3 cm wavelength. The highly extended orbit of the space radio telescope results in directional dependence of angular resolution.

derived from a figure in: J.L. Gomez et al., The Astrophysical Journal

Since 1974, observations with very long baseline interferometry (VLBI) have combined the signals from a cosmic object received at different radio telescopes spread around the globe to synthetize an antenna with the equivalent size of the largest separation between them. This has provided unprecedented sharpness of the images, with over 1000 times better resolution than that of the Hubble Space Telescope in visible light.

Now, an international collaboration has broken all records by combining fifteen radio telescopes on Earth and the 10-meter orbiting radio telescope Spektr-R of the RadioAstron mission lead by the Astro Space Center in Moscow. The participation of the Effelsberg 100-meter antenna makes the mission exceptionally sensitive to detecting weak cosmic radio emission. The special analysis (called “correlation”) required to obtain images of cosmic objects from the RadioAstron data is performed at the correlator facility of the Max Planck Institute for Radio Astronomy in Bonn.

The investigation of BL Lacertae (BL Lac) provides new insights into the nature of active galaxies, where an extremely massive black hole swallows surrounding matter while simultaneously shooting out a pair of jets of high-energy particles and magnetic fields at nearly light speed, which causes the approaching jet propagating at a smaller angle to the line of sight to appear much brighter than the receding jet with the latter often remaining below the measurement sensitivity. The source is in the direction of the constellation “Lacerta” (the lizard) in the northern sky, in a distance of about nine hundred million light-years from Earth.

Observations of microwave radiation are essential for exploring such jets, since high-energy electrons moving in magnetic fields are very proficient at producing microwaves. But most active galaxies with bright jets are billions of light years away from Earth, so their jets are tiny on the sky. High resolution is essential for viewing the jets in action to reveal phenomena like shock waves and turbulence that control how much light is produced at any given time.

“The first time combination of ground-based radio telescopes with the space radio telescope of the RadioAstron mission, operating at its maximum resolution, has allowed our team to imitate an antenna with a size of eight times the Earth’s diameter, yielding a resolution of only about twenty microarcseconds”, says José L. Gómez from the Instituto de Astrofísica de Andalucía-CSIC, the leader of the research team.

Seen from Earth, twenty microarcseconds correspond to the size of a two euro coin on the Moon; this high resolution probes with unprecedented detail the central regions of BL Lac, an active galactic nucleus which is powered by a supermassive black hole two hundred million times more massive than our Sun.

Active galactic nuclei (AGN) are the most energetic objects in the Universe, harboring a giant black hole at the center. Accretion of material toward the black hole leads to the formation of an accretion disk that tightly orbits the black hole, plus a pair of jets of particles shooting out of the nucleus in opposite directions at speeds nearly equal to that of light. “The unprecedented angular resolution provided by RadioAstron reveals a truly unique view of the innermost regions of AGN where most of the energy is produced”, notes Yuri Kovalev from the Astro Space Center, the RadioAstron Project Scientist and a member of the team.

Current models suggest that, due to the rotation of the black hole and accretion disk, the magnetic field lines are “twisted” into a spiral structure. Such a coiled field confines a jet to a narrow beam and accelerates its motion. This model is confirmed by the BL Lac observations, which reveal the existence of a large-scale spiral magnetic field in one of the jets.

The RadioAstron image also reveals an unusually high intensity of light at the upstream end of BL Lac’s approaching jet not observed before in other AGN. This is making astronomers wonder whether their established ideas on how the jets produce microwave radiation are correct.

“In BL Lac, we essentially look into the hottest cosmic hearth which is energizing matter so strongly that it would require achieving temperatures much higher than one trillion degrees, should we have tried to replicate these conditions on Earth”, says Andrei Lobanov from the Max Planck Institute for Radio Astronomy, a co-investigator in the project.

“Our current understanding of how the emission is generated in AGN establishes a clear limit on the intensity of microwaves that their cores can produce over long time spans. The extreme intensity observed in BL Lac exceeds that limit, requiring either velocities in the jet even closer to the speed of light than thought before or a revision of our theoretical models”, concludes José L. Gómez.

The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries.

The Spektr-R antenna of RadioAstron is at an elliptical orbit around Earth reaching a maximum apogee distance of 350,000 km which would result in a virtual radio telescope of up to 27 times the Earth’s diameter.

The European VLBI Network is a joint facility of independent European, African, Asian, and North American radio astronomy institutes.

This research is partly based on observations with the 100 m telescope of the MPIfR at Effelsberg.

The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.

This research is based on observations correlated at the Bonn Correlator, jointly operated by the Max Planck Institute for Radio Astronomy (MPIfR), and the Federal Agency for Cartography and Geodesy (BKG).

The research team comprises José L. Gómez, the leading author, and Pablo Galindo, both from the Instituto de Astrofisica de Andalucia-CSIC, Granada, Spain, Andrei P. Lobanov, Gabriele Bruni, Uwe Bach and James Anderson from the Max Planck Institute for Radio Astronomy, Bonn, Germany, Yuri Y. Kovalev, Kirill V. Sokolovsky, Nikolay S. Kardashev, and Mikhail M. Lisakov from the Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia, Alan P. Marscher and Svetlana G. Jorstad from the Institute for Astrophysical Research, Boston University, Massachusetts, USA and Yosuke Mizuno from the Institute for Theoretical Physics, Frankfurt am Main, Germany.

Original Paper:

J. L. Gómez et al. "Probing the innermost regions of AGN jets and their magnetic fields with Radioastron. I. Imaging BL Lacertae at 21 microarcsecond resolution". 2016, The Astrophysical Journal, Volume 817, Issue 2 (article 96) DOI: 10.3847/0004-637X/817/2/96

Local Contact:

Dr. Andrei Lobanov,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-191

Prof. Dr. Anton Zensus
Director and Head of Research Department „Radio Astronomy/VLBI“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-378

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399

Weitere Informationen:

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

More VideoLinks >>>