Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bern-made laser altimeter taking off to Mercury

05.10.2016

University of Bern’s Laser Altimeter BELA has been successfully tested during the last weeks and the last components will be delivered to ESA on 5 October. The first laser altimeter for inter-planetary flight to be built in Europe is part of the ESA BepiColombo mission to Mercury. Starting in 2024, it will provide data about the planet’s surface.

BELA (BepiColombo Laser Altimeter) has been developed by a Swiss-German-Spanish team led by the University of Bern. The instrument is designed to measure the topography of the planet Mercury, from onboard ESA’s space mission, BepiColombo, which is due to launch in April 2018. After an over 80 million kilometer journey, BepiColombo will go into orbit around Mercury in 2024.


The BepiColombo Laser Altimeter (BELA)

University of Bern / Ramon Lehmann

Entering the third dimension

«Cameras give us a 2D picture of planet. BELA is designed to give us the third dimension», says Nicolas Thomas, co-Principal Investigator and the hardware leader of the project. BELA uses a high power laser to determine the distance from the spacecraft to the surface of Mercury. Short pulses from an infrared laser are fired at the planet.

The light is reflected from the planet’s surface back to a Swiss-designed ultra-lightweight telescope and the time of flight of the laser pulse is measured. This approach allows BELA to measure the topography of mercury to an accuracy of better than one meter from a distance of 1000 kilometers. Nicolas Thomas puts it more pictorially: «It is a bit like measuring the distance to the North face of the Eiger to one meter accuracy from Hamburg».

Challenging tasks

«Together with our industrial partners in Switzerland, Germany, and Spain, we have developed a really advanced piece of equipment», says Karsten Seiferlin, the BELA Project Manager. «On Earth, rangefinders are common these days, but putting one in space to range over distances of over 1000 kilometers and weighing under 14 kilograms is extremely challenging.»

The returned pulse is only a few hundred photons, requiring a sophisticated detection scheme. Constructing such a scheme was especially difficult because Mercury is the nearest planet to the Sun and so the team also had to worry about the temperatures which reach around 200 degrees Celsius on the spacecraft outer skin.

However, the huge power consumption of the laser in a very short time ended up being the biggest problem. «This produces noise on the electrical signals. We had to far exceed the requirements normally used for space instruments for grounding the electronics», Nicolas Thomas explains.

Inspired by Albert Einstein

«The electronics for BELA required six different organizations to work together. We ended up having to develop several, very new, technical solutions to make the experiment work», says Thomas. «But BELA will contribute a lot to understanding Mercury. Einstein’s studies of the motion of Mercury have been so important to the theory of general relativity. It is nice to think that with this instrument, the University of Bern, where he used to work, can play a leading role in studying this particular planet in detail.»

About BepiColombo

The BepiColombo mission comprises two spacecraft, the Mercury Planetary Orbiter (MPO) to be built by ESA and the Mercury Magnetospheric Orbiter (MMO) to be built by JAXA. The two spacecraft will fly to Mercury together in a coupled system until reaching Mercury orbit. The MMO will then be released into a 400 km x 19200 km orbit to allow detailed study of the magnetospheric interaction between the planet and the solar wind. The MPO will then descend to a 400 km x 1500 km orbit which is optimum for remote-sensing of the planet's surface.

Contact:
Prof. Dr. Nicolas Thomas
Center for Space and Habitability, University of Bern
Phone +41 31 631 44 06 / nicolas.thomas@space.unibe.ch

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2016_e/medi...

Nathalie Matter | Universität Bern

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>