Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beams to Order from Table-Top Accelerators

23.08.2011
Berkeley Lab scientists achieve tunable, high-quality electron beams for laser plasma accelerators

Laser plasma accelerators offer the potential to create powerful electron beams within a fraction of the space required by conventional accelerators – and at a fraction of the cost.

Their promise for the future includes not only compact high-energy colliders for fundamental physics but diminutive sources of intensely bright beams of light, spanning the spectrum from microwaves to gamma rays – a new kind of ultrafast light source for investigating new materials, biological structures, and green chemistry.

Compared to today’s giant science facilities, “table-top” laser plasma accelerators may eventually be able to do equally powerful research with minimal environmental impact.

To reach these goals, laser plasma accelerators must be able to produce high-quality, stable electron beams and tune those beams to the users’ needs. The LOASIS program at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has already demonstrated high-quality beams up to a billion electron volts in a mere 3.3 centimeters; the BELLA project will reach 10 billion electron volts in a single meter.

Now the LOASIS team has demonstrated a simple way to tune highly stable beams through a wide range of energies. They describe their methods in the journal Nature Physics.

Surfing the wave

“To describe how a laser plasma accelerator works, I use the analogy of a surfer riding a wave,” says Wim Leemans, who heads the LOASIS program in Berkeley Lab’s Accelerator and Fusion Research Division. “The surfers are the electrons themselves. The waves form when a laser pulse plows through a plasma.”

In a plasma, atomic nuclei (ions) are separated from electrons, and immensely strong electric fields can build up between the oppositely charged particles when they are separated by the waves behind a powerful laser pulse. Some of the electrons in the plasma are swept up by the waves and are quickly accelerated to high energy.

“In this case the wave is a tsunami, and it doesn’t much matter what the surfers do; they’ll be carried along,” Leemans says. “That’s called self-trapping. But there are other ways a surfer can catch a wave. Real surfers can gauge the size and speed of an oncoming wave and start paddling to match its momentum.”

A laser plasma accelerator uses a laser pulse (red and blue disks, extreme right) to create a wake through a plasma, creating strong electric fields. Like surfers on a wave, free electrons ride the wake and are accelerated to high energies. Only the electron bunch propelled by the first wave (white glow) is shown in this simulation. (Simulation by Jean-Luc Vay and Cameron Geddes)

Attempts to create tunable electron beams through momentum-matching have been tried, by injecting electrons into the accelerating field – first giving them a boost using colliding laser pulses to catch the wave, then using a different drive-laser pulse to excite a wave on which those surfing electrons can be accelerated to high energies. It’s an approach that demands sophisticated timing and synchronization, and along with other tuning methods for one-stage accelerators, requires electron injection that’s localized in space and time.

“But there’s a third way of helping a surfer catch a wave,” Leemans says, “and that’s by slowing the wave until even slow surfers can catch it – then increasing the speed of the wave.” In other words, a two-stage process – and this turns out to be the secret to tunable, high-quality electron beams.

For their experiments the Berkeley Lab scientists modified the same 3.3-centimeter LOASIS accelerator and the same 40-trillion-watt peak-power drive laser, dubbed TREX, they used to produce the first billion-electron-volt beam. The accelerator is a block of titanium sapphire with a narrow capillary through it, filled with hydrogen gas that’s ionized to a plasma by a jolt of electricity, just before the drive-laser pulse enters.

“Two-stage” acceleration

Slowing the laser wake and then speeding it up requires controlling the wake’s phase velocity. To modify the LOASIS system for “two-stage,” tunable acceleration, the researchers introduced a supersonic jet of helium gas that passes through the accelerator’s hydrogen-filled capillary at the upstream front end. This sharply increases the density of electrons in the subsequent plasma. The plasma density then falls off rapidly downstream.

“The extra density itself serves as a lens to focus the laser to higher intensity, and the laser is focused right where the extra density is beginning to decrease,” says Leemans. Here at the edge of the “density downramp,” the slower waves trap electrons more readily. “The waves in the wake are falling farther behind the laser pulse as it enters the region of lower density.”

Density control is only one way to control wave velocity, however. Another method is through laser intensity – an unexpected gift from Albert Einstein’s Special Theory of Relativity. Leemans explains, “The particles in the plasma waves have slowed because of the increased density, but they’re still moving relativistically, near the speed of light,”

A supersonic jet of helium gas (red, upper panel) greatly increases plasma density upstream of the hydrogen-filled capillary (blue). In the lower panel, the black curve shows density increasing, then falling off downstream. The blue curve indicates the phase velocity of the wake, slowing where the laser pulse (pink) is focused, then increasing again as density decreases.

Carl Schroeder, a theoretician with LOASIS and an author of the Nature Physics paper, says that “as the laser is focused, its intensity increases, driving larger and larger plasma waves. Larger waves increase the relativistic mass effect. This reduces the frequency of the wave and stretches the wavelength. The peaks of the waves fall even farther behind the laser pulse.”

Says experimenter Tony Gonsalves, first author of the Nature Physics paper, “If we simply end the plasma there, we have a stable low-energy accelerator. But with a second stage we can accelerate the electron beam to much higher energy, and we can tune that energy.”

The same drive-laser pulse whose wake has been slowed by plasma density and laser intensity now powers into the low-density region of the accelerator; the following waves, carrying their extra load of electron “surfers,” rapidly catch up.

“Tuning the energy is possible because by changing the density or location of the higher-density plasma, we can change its focusing power, the intensity of the laser pulse, and how much the pulse spreads out in the following lower-density plasma,” Gonsalves says. “This allows us to tune the acceleration length and the final beam energy. The stability we achieve over our tunable range is quite amazing.”

By tailoring plasma density in the two zones over the length of the accelerator, the LOASIS researchers were able to tune the energy of the electron beams over a range from 100 million electron volts to 400 million electron volts, while maintaining energy stability to within a few percent.

Leemans says, “Tailoring plasma density longitudinally this way is a concept that shows a new path to the level of sophisticated tuning for accelerators and light sources that users of conventional facilities just take for granted. It’s a major step toward perfecting the laser plasma light sources and accelerators of the future.”

“Tunable laser plasma accelerator based on longitudinal density tailoring,” by Anthony Gonsalves, Kei Nakamura, Chen Lin, Dimitriy Panasenko, Satomi Shiraishi, Thomas Sokollik, Carlo Benedetti, Carl Schroeder, Cameron Geddes, Jeroen van Tilborg, Jens Osterhoff, Eric Esarey, Csaba Toth, and Wim Leemans, appears in Nature Physics and is available online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2071.html

This work was supported principally by the U.S. Department of Energy’s Office of Science, as well as the National Science Foundation and the Defense Advanced Research Projects Agency. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>