Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beam-beam compensation scheme doubles proton-proton collision rates at RHIC

05.01.2016

Smashing more protons produces more data for exploring physics questions

Accelerator physicists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have successfully implemented an innovative scheme for increasing proton collision rates at the Relativistic Heavy Ion Collider (RHIC). More proton collisions at this DOE Office of Science User Facility produce more data for scientists to sift through to answer important nuclear physics questions, including the search for the source of proton spin (see: https://www.bnl.gov/newsroom/news.php?a=25112).


Brookhaven Lab accelerator physicist Wolfram Fischer stands next to the electron lensing apparatus at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator/collider at the US Department of Energy's Brookhaven National Laboratory.

Credit: Brookhaven National Laboratory

"So far we have doubled the peak and average 'luminosity'-measures that are directly related to the collision rates," said Wolfram Fischer, Associate Chair for Accelerators of Brookhaven's Collider-Accelerator Department and lead author on a paper describing the success just published in Physical Review Letters. And, he says, there's potential for further gains by increasing the number protons from the injectors even more.

Colliding polarized protons

RHIC is the world's only polarized proton collider, capable of sending beams of protons around its 2.4-mile-circumference racetrack with their internal magnetic axes (also known as spins) aligned in a chosen direction. Colliding beams of such "spin polarized" protons and manipulating the spin directions gives scientists a way to explore how their internal building blocks, quarks and gluons, contribute to this intrinsic particle property.

Data at RHIC have revealed that both quarks and gluons make substantial contributions to spin, but still not enough to explain the total spin value. More data will help resolve this spin mystery by reducing uncertainties and allowing nuclear physicists to tease out other unaccounted for contributions.

But getting more protons to collide is an ongoing challenge because, as one beam of these positively charged particles passes through the other, the particles' like charges make them want to move away from one another.

"The strongest disturbance a proton experiences when it travels around the RHIC ring is when it flies through the other proton beam," Fischer said. "The result of the positive charges repelling is that the protons get deflecting kicks every time they fly through the oncoming beam."

Opposite charge produces opposite push

The size of the repulsive kick depends on where the proton flies through the beam, with protons about halfway from dead center to the outside edge of the beam's cross-section experiencing the largest outward push. Particles closer to the center or the outer edge of the cross-section experience less repulsion.

Because of the variable shape of this effect-increasing to a peak and then decreasing with distance from the beam's center-it's impossible to correct using magnets. "The magnetic field strength in magnets increases steadily from the center out," Fischer said.

So instead, the scientists turned to using oppositely charged particles to produce a compensating push in the opposite direction.

"We've implemented electron lensing technology to compensate for these head-on beam-beam effects," Fischer said.

Essentially, they use an electron gun to introduce a low-energy electron beam into a short stretch of the RHIC accelerator. Within that stretch, the electrons are guided by a magnetic field that keeps them from being deflected by the more energetic protons. As the protons pass through the negatively charged electron beam, they experience a kick in the opposite direction from the repulsive positive charge, which nudges the protons back toward the center of the beam.

"It's not a glass lens like you'd find in a camera," Fischer said, "but we call the technique 'electron lensing' because, like a lens that focuses light, the electron beam changes the trajectory of the protons flying through it."

Riding the optical wave

The scientists also take advantage of certain "optical" properties of RHIC's particle beams to ensure the method's efficacy.

"Ideally you would like to produce these compensating pushes right where the collisions happen, within the STAR and PHENIX detectors," Fischer said. "But then the experiments wouldn't work anymore. So we placed the electron lenses, one on each beam, at a certain distance from the detectors-called the optical distance-where they have an effect at the same point in the 'phase' of the particle beam that's inside the detectors."

Like a wave of light or sound that oscillates up and down in amplitude at a given frequency, the particles that travel around RHIC also oscillate a tiny bit. As long as the nuclear physicists know the frequency of the oscillations and give their electron-lensing kicks at the same point in that oscillation that the particles reach within the detector, the effect will compensate for the proton repulsion the particles experience at that distant location.

So far, the scientists have doubled the proton-proton collision rates at RHIC. They could potentially get even higher gains by increasing the number of protons injected into the machine.

"The key challenge will be to maintain the high degree of polarization the experiments need to explore the question of proton spin," Fischer said. But he insists there is clear potential for even higher proton-proton luminosity.

###

This work was performed by many people in the Collider-Accelerator Department and the Superconducting Magnet Division at Brookhaven National Laboratory, and was funded by the DOE Office of Science (NP). The scientists also acknowledge the U.S. LHC Accelerator Research Program (LARP) for support of beam-beam simulations, and researchers around the world especially the electron lens experts at Fermi National Accelerator Laboratory.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Operational Head-on Beam-Beam Compensation with Electron Lenses in the Relativistic Heavy Ion Collider"

Media Contact

Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350

 @brookhavenlab

http://www.bnl.gov 

Karen McNulty Walsh | EurekAlert!

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>